There is an open set of right triangles such that for each irrational triangle in this set (i) periodic billiards orbits are dense in the phase space, (ii) there is a unique nonsingular perpendicular billiard orbit which is not periodic, and (iii) the perpendicular periodic orbits fill the corresponding invariant surface.
Il y a un ensemble ouvert de triangles rectangles tels que pour chaque triangle irrationnel dans cet ensemble : (i) les trajectoires du billard sont denses dans l'espace des phases, (ii) il y a une seule trajectoire perpendiculaire du billard, qui est non singulière, et qui n'est pas périodique, (iii) les trajectoires perpendiculaires qui sont périodiques remplissent la surface invariante correspondante.
Keywords: Polygonal billiard, periodic orbits, symmetries
Mot clés : billiard polygonal, trajectoire périodique, symétries
@article{AIF_2005__55_1_29_0, author = {Troubetzkoy, Serge}, title = {Periodic billiard orbits in right triangles}, journal = {Annales de l'Institut Fourier}, pages = {29--46}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {55}, number = {1}, year = {2005}, doi = {10.5802/aif.2088}, mrnumber = {2141287}, zbl = {1063.37022}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.2088/} }
TY - JOUR AU - Troubetzkoy, Serge TI - Periodic billiard orbits in right triangles JO - Annales de l'Institut Fourier PY - 2005 SP - 29 EP - 46 VL - 55 IS - 1 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.2088/ DO - 10.5802/aif.2088 LA - en ID - AIF_2005__55_1_29_0 ER -
%0 Journal Article %A Troubetzkoy, Serge %T Periodic billiard orbits in right triangles %J Annales de l'Institut Fourier %D 2005 %P 29-46 %V 55 %N 1 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.2088/ %R 10.5802/aif.2088 %G en %F AIF_2005__55_1_29_0
Troubetzkoy, Serge. Periodic billiard orbits in right triangles. Annales de l'Institut Fourier, Volume 55 (2005) no. 1, pp. 29-46. doi : 10.5802/aif.2088. http://archive.numdam.org/articles/10.5802/aif.2088/
[BGKT] Periodic billiard orbits are dense in rational polygons, Trans. AMS, Volume 350 (1998), pp. 3523-3535 | DOI | MR | Zbl
[Bo] Billiards and rational periodic directions in polygons, Amer. Math. Monthly, Volume 99 (1992), pp. 522-529 | DOI | MR | Zbl
[CHK] Periodic trajectories in right triangle billiards, Phys. Rev., Volume E52 (1995), pp. 2066-2071 | MR
[Ga] Non-periodic and not everywhere dense billiard trajectories in convex polygons and polyhedrons, Comm. Math. Phys., Volume 91 (1983), pp. 187-211 | DOI | MR | Zbl
[GSV] Periodic billiard trajectories in polygons: generating mechanisms, Russian Math. Surveys, Volume 47 (1992), pp. 5-80 | DOI | MR | Zbl
[GT] Directional flows and strong recurrence for polygonal billiards, Proceedings of the International Congress of Dynamical Systems (1996), pp. 21-45 | Zbl
[Gu1] Billiard in polygons, Physica, Volume D19 (1986), pp. 311-333 | MR | Zbl
[Gu2] Billiard in polygons: survey of recent results, J. Stat. Phys., Volume 83 (1996), pp. 7-26 | DOI | MR | Zbl
[GZ] Periodic billiard trajectories in right triangles and right-angled tetrahedra, Regular and Chaotic Dynamics, Volume 8 (2003), pp. 29-44 | DOI | MR | Zbl
[KH] Encyclopedia of Mathematics and its Applications, 54, Cambridge University Press, 1995 | MR | Zbl
[Ma] Closed trajectories of a quadratic differential with an application to billiards, Duke Math. J., Volume 53 (1986), pp. 307-313 | MR | Zbl
[MT] Rational billiards and flat structures (Handbook of dynamical systems), Volume 1A (2002), pp. 1015-1089 | Zbl
[Ru] Periodic orbits in triangular billiards, Acta Physica Polonica, Volume B22 (1991), pp. 955-981
[ST] Inhomogeneous Diophantine approximation and angular recurrence for polygonal billiards, Math. Sb., Volume 194 (2003), pp. 295-309 | DOI | MR | Zbl
[Ta] Billiards, Panoramas et Synthèses, Soc. Math. France, 1995 | MR | Zbl
[Tr] Recurrence and periodic billiard orbits in polygons, Regul. Chaotic Dyn., Volume 9 (2004), pp. 1-12 | DOI | MR | Zbl
Cited by Sources: