According to Lévy's theorem, the denominators of the continued fraction expansion of a real number almost surely grow at most at the rate of a geometric series. We extend this estimate to best simultaneous Diophantine approximations to a set of linear forms.
D'après le théorème de Lévy, les dénominateurs du développement en fraction continue d'un réel croissent presque sûrement à une vitesse au plus exponentielle. Nous étendons cette estimation aux meilleures approximations diophantiennes simultanées de formes linéaires.
Mot clés : approximations diophantiennes, théorème de Lévy, réseaux
Keywords: Diophantine approximations, Lévy's theorem, lattices
@article{AIF_2005__55_5_1635_0, author = {Chevallier, Nicolas}, title = {Meilleures approximations diophantiennes simultan\'ees et th\'eor\`eme de {L\'evy}}, journal = {Annales de l'Institut Fourier}, pages = {1635--1657}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {55}, number = {5}, year = {2005}, doi = {10.5802/aif.2134}, mrnumber = {2172275}, zbl = {1080.11052}, language = {fr}, url = {http://archive.numdam.org/articles/10.5802/aif.2134/} }
TY - JOUR AU - Chevallier, Nicolas TI - Meilleures approximations diophantiennes simultanées et théorème de Lévy JO - Annales de l'Institut Fourier PY - 2005 SP - 1635 EP - 1657 VL - 55 IS - 5 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.2134/ DO - 10.5802/aif.2134 LA - fr ID - AIF_2005__55_5_1635_0 ER -
%0 Journal Article %A Chevallier, Nicolas %T Meilleures approximations diophantiennes simultanées et théorème de Lévy %J Annales de l'Institut Fourier %D 2005 %P 1635-1657 %V 55 %N 5 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.2134/ %R 10.5802/aif.2134 %G fr %F AIF_2005__55_5_1635_0
Chevallier, Nicolas. Meilleures approximations diophantiennes simultanées et théorème de Lévy. Annales de l'Institut Fourier, Volume 55 (2005) no. 5, pp. 1635-1657. doi : 10.5802/aif.2134. http://archive.numdam.org/articles/10.5802/aif.2134/
[Be, Ma] Ergodic Theory and Topological Dynamics of Group Actions on Homogeneous Spaces, Lecture Note Series, 269, London Mathematical Society, 2000 | Zbl
[Br,Gu] Exposants caractéristiques de l'algorithme de Jacobi-Perron et de la transformation associée, Annales Institut Fourier, Volume 51 (2001) no. 3, pp. 565-686 | DOI | Numdam | MR | Zbl
[Br1] A two-dimensional continued fraction algorithm for best approximations with an application in cubic fields, J. Reine Angew. Math., Volume 326 (1981), pp. 18-44 | MR | Zbl
[Br2] Multi-dimensional continued fraction algorithms, Mathematical Center Tracts, 145, Math. Centrum, Amsterdam, 1981 | Zbl
[Ca] An Introduction to Diophantine Approximation, Cambridge Tracts in Mathematics and Mathematical Physics, 45, Cambridge Univ. Press, 1965 | Zbl
[Ch1] Distances dans la suite des multiples d'un point du tore à deux dimensions, Acta Arith., Volume 74 (1996), pp. 47-59 | MR | Zbl
[Ch2] Meilleures approximations d'un élément du tore et géométrie de la suite des multiples de cet élément, Acta Arith., Volume 78 (1996), pp. 19-35 | MR | Zbl
[Ch3] Géométrie des suites de Kronecker, Manuscripta Math., Volume 94 (1997), pp. 231-241 | DOI | MR | Zbl
[Ch4] Meilleures approximations diophantiennes d'un élément du tore , Acta Arith., Volume 97 (2001), pp. 219-240 | DOI | MR | Zbl
[Ch5] Meilleures approximations diophantiennes simultanées, Cahiers du séminaire de probabilités, Rennes (2002)
[Da] Divergent trajectories of flows on homogeneous spaces and Diophantine approximation, J. Reine Angew. Math., Volume 359 (1985), pp. 55-89 | MR | Zbl
[Gr, Lag] Cutting Sequences for Geodesic Flow on the Modular Surface and Continued Fractions, Monatsh, Volume 133 (2001), pp. 295-339 | MR | Zbl
[Lag1] Some new results in simultaneous diophantine approximation, Proc. of the Queen's Number Theory Conference 1979 (Queen's Paper in Pure and Applied Math.), Volume 54 (1980), pp. 453-474 | Zbl
[Lag2] Best simultaneous diophantine approximations I, Growth Rates of Best Approximations denominators, Trans. Amer. Math. Soc., Volume 272 (1982) no. 2, pp. 545-554 | MR | Zbl
[Lag3] Best simultaneous diophantine approximations II, behavior of consecutive best approximations, Pacific Journal of Mathematics, Volume 102 (1982) no. 1, pp. 61-88 | MR | Zbl
[Lag4] Best diophantine approximations to a set of linear forms, J. Austral. Math. Soc. Ser. A, Volume 34 (1983), pp. 114-122 | DOI | MR | Zbl
[Lag5] Geodesic multidimensional continued fractions, Proc. London Math. Soc., Volume 69 (1994) no. 3, pp. 464-488 | DOI | MR | Zbl
[Ma] Diophantine Approximations, Lattices and flows on Homogeneous Spaces, A panorama of number theory or the view from Baker garden (2002), pp. 280-310 | Zbl
[Ro] The signature of the errors of some simultaneous Diophantine approximations, Proc. London Math. Soc., Volume 52 (1951), pp. 186-190 | MR | Zbl
[Schm] A metrical theorem in diophantine approximation, Canadian J. Math., Volume 12 (1960), pp. 619-631 | DOI | MR | Zbl
[Schw] Multidimensional Continued Fractions, Oxford Science Publications, Oxford University Press, 2000 | MR | Zbl
[Sp] Metric Theory of Diophantine Approximations, W.H. Winston Sons, Washington, C. D., 1979 | Zbl
[Wa] Foundations of Differentiable Manifolds and Lie Groups, G.T.M., 94, Springer-Verlag, 1983 | MR | Zbl
Cited by Sources: