Numerical stu\-dy of the 6-vertex model with domain wall boundary conditions
Annales de l'Institut Fourier, Volume 55 (2005) no. 6, pp. 1847-1869.

A Markov process converging to a random state of the 6-vertex model is constructed. It is used to show that a droplet of c-vertices is created in the antiferromagnetic phase and that the shape of this droplet has four cusps.

Nous construisons un processus de Markov qui converge vers un état aléatoire du modèle 6- vertex. Ensuite, nous l’utilisons pour faire apparaître la création dans la phase antiferromagnétique d’une goutelette constituée de sommets de type c et dont la forme possède 4 pointes.

DOI: 10.5802/aif.2144
Classification: 82-08, 82B20, 82B23
Keywords: 6-vertex, Markov chain, random sampling, Monte Carlo
Mot clés : 6-vertex, chaîne de Markov, échantillonnage aléatoire, Monte Carlo
Allison, David 1; Reshetikhin, Nicolai 

1 University of California, department of mathematics, Berkeley CA 94720-38 (USA)
@article{AIF_2005__55_6_1847_0,
     author = {Allison, David and Reshetikhin, Nicolai},
     title = {Numerical stu\-dy of the 6-vertex model with domain wall boundary conditions},
     journal = {Annales de l'Institut Fourier},
     pages = {1847--1869},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {55},
     number = {6},
     year = {2005},
     doi = {10.5802/aif.2144},
     mrnumber = {2187938},
     zbl = {02230060},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.2144/}
}
TY  - JOUR
AU  - Allison, David
AU  - Reshetikhin, Nicolai
TI  - Numerical stu\-dy of the 6-vertex model with domain wall boundary conditions
JO  - Annales de l'Institut Fourier
PY  - 2005
SP  - 1847
EP  - 1869
VL  - 55
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - http://archive.numdam.org/articles/10.5802/aif.2144/
DO  - 10.5802/aif.2144
LA  - en
ID  - AIF_2005__55_6_1847_0
ER  - 
%0 Journal Article
%A Allison, David
%A Reshetikhin, Nicolai
%T Numerical stu\-dy of the 6-vertex model with domain wall boundary conditions
%J Annales de l'Institut Fourier
%D 2005
%P 1847-1869
%V 55
%N 6
%I Association des Annales de l’institut Fourier
%U http://archive.numdam.org/articles/10.5802/aif.2144/
%R 10.5802/aif.2144
%G en
%F AIF_2005__55_6_1847_0
Allison, David; Reshetikhin, Nicolai. Numerical stu\-dy of the 6-vertex model with domain wall boundary conditions. Annales de l'Institut Fourier, Volume 55 (2005) no. 6, pp. 1847-1869. doi : 10.5802/aif.2144. http://archive.numdam.org/articles/10.5802/aif.2144/

[1] H. Cohn; M. Larsen; J. Propp The shape of a typical boxed plane partition, New York J. Math., Volume 4 (1998), pp. 137-165 | MR | Zbl

[2] H. Cohn; N. Elkis; J. Propp Local statistics of random domino tilings of the Aztec diamons, Duke Math. J., Volume 85 (1996), pp. 117-166 | MR | Zbl

[3] R.J. Baxter Exactly Solved Models in Statistical Mechanics, Academic Press, San Diego, 1982 | MR | Zbl

[4] K. Eloranta Diamond Ice, J. Statist. Phys., Volume 96 (1999) no. 5-6, pp. 1091-1109 | MR | Zbl

[5] A. Izergin Partition function of the 6-vertex model in a finite volume, Sov. Phys. Dokl., Volume 32 (1987), pp. 878-879 | Zbl

[6] R. Kenyon An introduction to the dimer models (math.CO/0310326, http://arxiv.org/abs/math.CO/0310326) | Zbl

[7] V. Korepin; P. Zinn-Justin Thermodynamic limit of the six-vertex model withdomain wall boundary conditions (cond–mat/0004250, http://arxiv.org/abs/cond-mat/0004250) | Zbl

[8] V.E. Korepin Calculation of norms of Bethe wave functions, Comm. Math. Phys., Volume 86 (1982) no. 3, pp. 391-418 | DOI | MR | Zbl

[9] G. Kuperberg Another proof of the alternating-sign matrix conjecture, Int. Math. Res. Notes, Volume 3 (1996), pp. 139-150 | MR | Zbl

[10] E. Lieb; F. Wu; C. Domb and M.S. Green Two dimensional ferroelectric models, Phase transitions and critical phenomena (1972)

[11] R. Kenyon; A. Okounkov; S. Sheffield Dimers and amoebae (math–ph/0311005, http://arxiv.org/abs/math-ph/0311005) | Zbl

[12] A. Okounkov; N. Reshetikhin Random skew plane partitions and the Pearcey process (math.CO/0503508, http://arxiv.org/abs/math.CO/0503508)

[13] A. Okounkov; N. Reshetikhin Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram, J. Amer. Math. Soc., Volume 16 (2003) no. 3, pp. 581-603 | DOI | MR | Zbl

[14] J. Propp; D. Wilson Coupling from the past: a user's guide, Microsurveys in Discrete Probability (Princeton, NJ, 1997) (DIMACS Ser. Discrete Math. Theoret. Comp. Sci.), Volume 41 (1998), pp. 181-192 | Zbl

[15] A. Sinclair Algorithms for Random Generation and Counting, Birkhauser, Boston, 1993 | MR | Zbl

[16] O.F. Syljuasen; M.B. Zvonarev Directed-loop Monte Carlo simulations of vertex models (cond-mat/0401491)

[17] A.V. Razumov; Yu. Stroganov Combinatorial structure of the ground state of O(1) loop model (math.CO/0104216, http://arxiv.org/abs/math.CO/0104216)

[18] Asymptotic combinatorics withapplications to mathematical physics, (ed. by A.M. Vershik), 1815, Springer, 2003 | Zbl

[19] P. Zinn-Justin Six-vertex model with domain wall boundary conditions and one-matrix model, Phys. Rev. E, Volume 62 (2000) no. 3, part A, pp. 3411-3418 | DOI | MR

[20] J.-B. Zuber On the counting of fully packed loop configurations. Some new conjectures (math-ph/0309057, http://arxiv.org/abs/math-ph/0309057) | Zbl

Cited by Sources: