We give explicit formulas for Hadamard's coefficients in terms of the tau-function of the Korteweg-de Vries hierarchy. We show that some of the basic properties of these coefficients can be easily derived from these formulas.
Nous donnons des formules explicites pour les coefficients d'Hadamard en termes de la fonction tau de la hiérarchie de Korteweg-de Vries. A partir de cette formule nous pouvons facilement démontrer les propriétés de ces coefficients.
Keywords: Heat kernel expansions, KdV hierarchy, tau functions
Mot clés : Noyau de la chaleur, hiérarchie de KdV, fonctions tau
@article{AIF_2005__55_6_2117_0, author = {Iliev, Plamen}, title = {On the heat kernel and the {Korteweg--de} {Vries} hierarchy}, journal = {Annales de l'Institut Fourier}, pages = {2117--2127}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {55}, number = {6}, year = {2005}, doi = {10.5802/aif.2154}, mrnumber = {2187948}, zbl = {1078.35103}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.2154/} }
TY - JOUR AU - Iliev, Plamen TI - On the heat kernel and the Korteweg--de Vries hierarchy JO - Annales de l'Institut Fourier PY - 2005 SP - 2117 EP - 2127 VL - 55 IS - 6 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.2154/ DO - 10.5802/aif.2154 LA - en ID - AIF_2005__55_6_2117_0 ER -
%0 Journal Article %A Iliev, Plamen %T On the heat kernel and the Korteweg--de Vries hierarchy %J Annales de l'Institut Fourier %D 2005 %P 2117-2127 %V 55 %N 6 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.2154/ %R 10.5802/aif.2154 %G en %F AIF_2005__55_6_2117_0
Iliev, Plamen. On the heat kernel and the Korteweg--de Vries hierarchy. Annales de l'Institut Fourier, Volume 55 (2005) no. 6, pp. 2117-2127. doi : 10.5802/aif.2154. http://archive.numdam.org/articles/10.5802/aif.2154/
[1] On a class of polynomials connected with the Korteweg-de Vries equation, Comm. Math. Phys., Volume 61 (1978), pp. 1-30 | DOI | MR | Zbl
[2] Rational and elliptic solutions of the Korteweg-de Vries equation and a related many-body problem, Comm. Pure Appl. Math., Volume 30 (1977), pp. 95-148 | DOI | MR | Zbl
[3] Special Functions, Encyclopedia of Mathematics and Its Applications, 71, Cambridge University Press, 1990 | Zbl
[4] A new explicit expression for the Korteweg-de Vries hierarchy, Math. Nachr., Volume 219 (2000), pp. 45-64 | DOI | MR | Zbl
[5] Heat kernels and Dirac operators, Grundlehren der Mathematischen Wissenschaften, 298, Springer-Verlag, Berlin, 1992 | MR | Zbl
[6] Geometry of the Spectrum, Proc. Sympos. Pure Math., 27, Amer. Math. Soc., Providence, 1975 | Zbl
[7] Transformation groups for soliton equations (Proc. RIMS Symp. Nonlinear Integrable Systems - Classical and Quantum Theory (Kyoto 1981)) (1983), pp. 39-119 | Zbl
[8] Soliton Equations and Hamiltonian Systems, 2nd Edition, Advanced Series in Mathematical Physics, 26, World Scienti?c, 2003 | MR | Zbl
[9] Differential equations in the spectral parameter, Comm. Math. Phys., Volume 103 (1986), pp. 177-240 | DOI | MR | Zbl
[10] Heat kernel techniques and quantum gravity (Winnipeg, MB, 1994), Discourses Math. Appl., 4, Texas A & M Univ., College Station, TX, 1995 | MR | Zbl
[11] Heat equation asymptotics, Differential geometry: Riemannian geometry (Los Angeles, CA, 1990), 54, Part 3, Amer. Math. Soc., Providence, RI, 1993 | MR | Zbl
[12] Heat kernel expansions on the integers, Math. Phys. Anal. Geom., Volume 5 (2002), pp. 183-200 | DOI | MR | Zbl
[13] Lectures on Cauchy's Problem, New Haven, Yale Univ. Press (1923) | JFM
[14] The spectral matrices of Toda solitons and the fundamental solution of some discrete heat equations (to appear in Annales de l'Institut Fourier) | Numdam
[15] The direct method in soliton theory (Translated from the 1992 Japanese original and edited by Atsushi Nagai, Jon Nimmo and Claire Gilson (with a foreword by Jarmo Hietarinta and Nimmo)), Volume 155 (2004) | Zbl
[16] Finite heat kernel expansions on the real line (math-ph/0504046, http://arxiv.org/abs/math-ph/0504046) | Zbl
[17] Can one hear the shape of a drum?, Amer. Math. Monthly, Volume 73 (1966), pp. 1-23 | DOI | MR | Zbl
[18] Curvature and the eigenvalues of the Laplacian, J. Diff. Geom., Volume 1 (1967), pp. 43-69 | MR | Zbl
[19] The spectrum of Hill's equation, Invent. Math., Volume 30 (1975), pp. 217-274 | DOI | MR | Zbl
[20] Soliton equations as dynamical systems on infinite dimensional Grassmann manifolds, Lect. Notes Num. Appl. Anal., Volume 5 (1982), pp. 259-271 | MR | Zbl
[21] An explicit expression for the Korteweg-de Vries hierarchy, Z. Anal. Anwendungen, Volume 7 (1988), pp. 203-214 | MR | Zbl
[22] Integrable foundations of string theory, Lectures on integrable systems, CIMPA-Summer school at Sophia Antipolis (1991) (1994), pp. 163-267 | Zbl
Cited by Sources: