On gaps in Rényi β-expansions of unity for β>1 an algebraic number
[Sur les lacunes du β-développement de Rényi de l’unité pour β>1 un nombre algébrique]
Annales de l'Institut Fourier, Tome 56 (2006) no. 7, pp. 2565-2579.

Soit β>1 un nombre algébrique. Nous étudions les plages de zéros (“lacunes”) dans le β-développement de Rényi  dβ(1) de l’unité qui contrôle l’ensemble β des β-entiers. En utilisant une version de l’inégalité de Liouville qui étend des théorèmes d’approximation de Mahler et de Güting, on montre que les plages de zéros dans dβ(1) présentent une “lacunarité” asymptotiquement bornée supérieurement par  log(M(β))/log(β), où  M(β)  est la mesure de Mahler de  β. La preuve de ce résultat fournit de manière naturelle une nouvelle classification des nombres algébriques >1 en classes appelées Qi(j) que nous comparons à la classification de Bertrand-Mathis avec les classes C1 à C5 (reportée dans un article de Blanchard). Cette nouvelle classification repose sur la valeur asymptotique maximale du “quotient de lacune” de la série “lacunaire” associée à dβ(1). Comme corollaire, tous les nombres de Salem sont dans la classe C1Q0(1) Q0(2) Q0(3) ; ce résultat est également obtenu par un théorème récent qui généralise le théorème de Thue-Siegel-Roth donné par Corvaja.

Let β>1 be an algebraic number. We study the strings of zeros (“gaps”) in the Rényi β-expansion  dβ(1) of unity which controls the set β of β-integers. Using a version of Liouville’s inequality which extends Mahler’s and Güting’s approximation theorems, the strings of zeros in dβ(1) are shown to exhibit a “gappiness” asymptotically bounded above by  log(M(β))/log(β), where  M(β)  is the Mahler measure of  β. The proof of this result provides in a natural way a new classification of algebraic numbers >1 with classes called Qi(j) which we compare to Bertrand-Mathis’s classification with classes C1 to C5 (reported in an article by Blanchard). This new classification relies on the maximal asymptotic “quotient of the gap” value of the “gappy” power series associated with dβ(1). As a corollary, all Salem numbers are in the class C1Q0(1) Q0(2) Q0(3) ; this result is also directly proved using a recent generalization of the Thue-Siegel-Roth Theorem given by Corvaja.

DOI : 10.5802/aif.2250
Classification : 11B05, 11Jxx, 11J68, 11R06, 52C23
Keywords: Beta-integer, beta-numeration, PV number, Salem number, Perron number, Mahler measure, Diophantine approximation, Mahler’s series, mathematical quasicrystal
Mot clés : Beta-entier, beta-numération, nombre de Pisot, nombre de Salem, nombre de Perron, mesure de Mahler, approximation Diophantienne, série de Mahler, quasicristal mathématique
Verger-Gaugry, Jean-Louis 1

1 Université de Grenoble I Institut Fourier UMR CNRS 5582 BP 74 - Domaine Universitaire, 38402 Saint-Martin d’Hères (France)
@article{AIF_2006__56_7_2565_0,
     author = {Verger-Gaugry, Jean-Louis},
     title = {On gaps in {R\'enyi} $\beta $-expansions of unity for $\beta > 1$ an algebraic number},
     journal = {Annales de l'Institut Fourier},
     pages = {2565--2579},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {56},
     number = {7},
     year = {2006},
     doi = {10.5802/aif.2250},
     mrnumber = {2290791},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/aif.2250/}
}
TY  - JOUR
AU  - Verger-Gaugry, Jean-Louis
TI  - On gaps in Rényi $\beta $-expansions of unity for $\beta > 1$ an algebraic number
JO  - Annales de l'Institut Fourier
PY  - 2006
SP  - 2565
EP  - 2579
VL  - 56
IS  - 7
PB  - Association des Annales de l’institut Fourier
UR  - https://www.numdam.org/articles/10.5802/aif.2250/
DO  - 10.5802/aif.2250
LA  - en
ID  - AIF_2006__56_7_2565_0
ER  - 
%0 Journal Article
%A Verger-Gaugry, Jean-Louis
%T On gaps in Rényi $\beta $-expansions of unity for $\beta > 1$ an algebraic number
%J Annales de l'Institut Fourier
%D 2006
%P 2565-2579
%V 56
%N 7
%I Association des Annales de l’institut Fourier
%U https://www.numdam.org/articles/10.5802/aif.2250/
%R 10.5802/aif.2250
%G en
%F AIF_2006__56_7_2565_0
Verger-Gaugry, Jean-Louis. On gaps in Rényi $\beta $-expansions of unity for $\beta > 1$ an algebraic number. Annales de l'Institut Fourier, Tome 56 (2006) no. 7, pp. 2565-2579. doi : 10.5802/aif.2250. https://www.numdam.org/articles/10.5802/aif.2250/

[1] Adamczewski, B. Transcendance “à la Liouville” de certains nombres réels, C. R. Acad. Sci. Paris, Volume 338 (2004) no. I, pp. 511-514 | MR | Zbl

[2] Allouche, J.-P.; Cosnard, M. The Komornik-Loreti constant is tanscendental, Amer. Math. Monthly, Volume 107 (2000), pp. 448-449 | DOI | MR | Zbl

[3] Allouche, J.-P.; Shallit, J.; Ding, C.; Helleseth, T.; Niederreiter, H. The ubiquitous Prouhet-Thue-Morse sequence, Sequences and Their Applications, Springer-Verlag, Proceedings of SETA’98 (1999), pp. 1-16 | MR | Zbl

[4] Bertin, M.-J.; Decomps-Guilloux, A.; Grandet-Hugot, M.; Pathiaux-Delefosse, M.; Schreiber, J.-P. Pisot and Salem Numbers, Birkhaüser, 1992 | MR | Zbl

[5] Bertrand-Mathis, A. Questions diverses relatives aux systèmes codés : applications au  θ-shift (preprint)

[6] Bertrand-Mathis, A. Développements en base Pisot et répartition modulo  1, C. R. Acad. Sci. Paris, Volume 285 (1977) no. A, pp. 419-421 | MR | Zbl

[7] Bertrand-Mathis, A. Développements en base θ et répartition modulo 1 de la suite (xθn), Bull. Soc. Math. Fr., Volume 114 (1986), pp. 271-324 | Numdam | MR | Zbl

[8] Blanchard, F. β-expansions and Symbolic Dynamics, Theoret. Comput. Sci., Volume 65 (1989), pp. 131-141 | DOI | MR | Zbl

[9] Boyd, D. Salem numbers of degree four have periodic expansions, Théorie des Nombres - Number Theory, Walter de Gruyter & Co., Eds. J.M. de Koninck and C. Levesque, Berlin and New York (1989), pp. 57-64 | MR | Zbl

[10] Boyd, D. On beta expansions for Pisot numbers, Math. Comp., Volume 65 (1996), pp. 841-860 | DOI | MR | Zbl

[11] Boyd, D. On the beta expansion for Salem numbers of degree 6, Math. Comp., Volume 65 (1996), pp. 861-875 | DOI | MR | Zbl

[12] Boyd, D. The beta expansions for Salem numbers, Organic Mathematics (Canad. Math. Soc. Conf. Proc. 20), A.M.S., Providence, RI (1997), pp. 117-131 | MR | Zbl

[13] Burdik, C.; Frougny, Ch.; Gazeau, J.-P.; Krejcar, R. Beta-integers as natural counting systems for quasicrystals, J. Phys. A: Math. Gen., Volume 31 (1998), pp. 6449-6472 | DOI | MR | Zbl

[14] Chi, D. P.; Kwon, D. Sturmian words,  β-shifts, and transcendence, Theoret. Comput. Sci., Volume 321 (2004), pp. 395-404 | DOI | MR | Zbl

[15] Corvaja, P. Autour du Théorème de Roth, Monath. Math., Volume 124 (1997), pp. 147-175 | DOI | MR | Zbl

[16] Corvaja, P.; Zannier, U. Some New Applications of the Subspace Theorem, Compositio Mathematica, Volume 131 (2002), pp. 319-340 | DOI | MR | Zbl

[17] Denker, M.; Grillenberger, C.; Sigmund, K. Ergodic Theory on compact spaces, Springer Lecture Notes in Math. 527, 1976 | MR | Zbl

[18] Elkharrat, A.; Frougny, C.; Gazeau, J.-P.; Verger-Gaugry, J.-L. Symmetry groups for beta-lattices, Theor. Comp. Sci., Volume 319 (2004), pp. 281-305 | DOI | MR | Zbl

[19] Fabre, S. Substitutions et β-systèmes de numération, Theoret. Comput. Sci., Volume 137 (1995), pp. 219-236 | DOI | MR | Zbl

[20] Flatto, L.; Lagarias, J.C.; Poonen, B. The zeta function of the beta transformation, Ergod. Th. and Dynam. Sys., Volume 14 (1994), pp. 237-266 | DOI | MR | Zbl

[21] Frougny, C.; Gazeau, J.-P.; Krejcar, R. Additive and multiplicative properties of point sets based on beta-integers, Theoret. Comput. Sci., Volume 303 (2003), pp. 491-516 | DOI | MR | Zbl

[22] Frougny, C.; Solomyak, B. Finite beta-expansions, Ergod. Theor. Dynam. Sys., Volume 12 (1992), pp. 713-723 | MR | Zbl

[23] Frougny, Ch. Number Representation and Finite Automata, London Math. Soc. Lecture Note Ser., Volume 279 (2000), pp. 207-228 | MR | Zbl

[24] Frougny, Ch. Numeration systems, 7, Algebraic Combinatorics on Words, Cambridge University Press (2003) | MR

[25] Gazeau, J.-P. Pisot-Cyclotomic Integers for Quasilattices, The Mathematics of Long-Range Aperiodic Order, Ed. R. V. Moody, Kluwer Academic Publisher, Dordrecht (1997), pp. 175-198 | MR | Zbl

[26] Gazeau, J.-P.; Verger-Gaugry, J.-L. Geometric study of the set of β-integers for a Perron number and mathematical quasicrystals, J. Th. Nombres Bordeaux, Volume 16 (2004), pp. 1-25 | Numdam | MR | Zbl

[27] Gazeau, J.-P.; Verger-Gaugry, J.-L. Diffraction spectra of weighted Delone sets on β-lattices with β a quadratic unitary Pisot number (2006) (Ann. Inst. Fourier) | Numdam

[28] Güting, R. Approximation of algebraic numbers by algebraic numbers, Michigan Math. J., Volume 8 (1961), pp. 149-159 | DOI | MR | Zbl

[29] Komornik, V.; Loreti, P. Unique developments in non-integer bases, Amer. Math. Monthly, Volume 105 (1998), pp. 636-639 | DOI | MR | Zbl

[30] Lang, S. Fundamentals of Diophantine Geometry, Springer-Verlag, New York (1983), pp. 158-187 | MR | Zbl

[31] LeVeque, W. J. Topics in Number Theory, Addison-Wesley, Volume II (1956), pp. 121-160 | MR | Zbl

[32] Lind, D. The entropies of topological Markov shifts and a related class of algebraic integers, Erg. Th. Dyn. Syst., Volume 4 (1984), pp. 283-300 | DOI | MR | Zbl

[33] Lind, D. Matrices of Perron numbers, J. Number Theory, Volume 40 (1992), pp. 211-217 | DOI | MR | Zbl

[34] Lothaire, M. Algebraic Combinatorics on Words, Cambridge University Press, 2003 | MR | Zbl

[35] Mahler, K. Arithmetic properties of lacunary power series with integral coefficients, J. Austr. Math. Soc., Volume 5 (1965), pp. 56-64 | DOI | MR | Zbl

[36] Nishioka, K. Algebraic independence by Mahler’s method and S-units equations, Compositio Math., Volume 92 (1994), pp. 87-110 | Numdam | MR | Zbl

[37] Ostrowski, A. On representation of analytical functions by power series, J. London Math. Soc., Volume 1 (1926), pp. 251-263 (Addendum), ibid 4 (1929), p. 32 | DOI

[38] Parry, W. On the β-expansions of real numbers, Acta Math. Acad. Sci. Hung., Volume 11 (1960), pp. 401-416 | DOI | MR | Zbl

[39] Pythéas Fogg, N. Substitutions in dynamics, arithmetics and combinatorics, Springer Lecture Notes in Math. 1794, 2003 | MR | Zbl

[40] Rényi, A. Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hung., Volume 8 (1957), pp. 477-493 | DOI | MR | Zbl

[41] Schmeling, J. Symbolic dynamics for β-shift and self-normal numbers, Ergod. Th. & Dynam. Sys., Volume 17 (1997), pp. 675-694 | DOI | MR | Zbl

[42] Schmidt, K. On periodic expansions of Pisot numbers and Salem numbers, Bull. London Math. Soc., Volume 12 (1980), pp. 269-278 | DOI | MR | Zbl

[43] Schmidt, W. M. Diophantine Approximations and Diophantine Equations, Springer Lecture Notes in Math. 1467, 1991 | MR | Zbl

[44] Solomyak, B. Conjugates of beta-numbers and the zero-free domain for a class of analytic functions, Proc. London Math. Soc. (3), Volume 68 (1993), pp. 477-498 | DOI | MR | Zbl

[45] Thurston, W. P. Groups, tilings, and finite state automata (Summer 1989) (A.M.S. Colloquium Lectures, Boulder)

[46] Verger-Gaugry, J.-L.; Nyssen, L. On self-similar finitely generated uniformly discrete (SFU-) sets and sphere packings, Number Theory and Physics (IRMA Lectures in Mathematics and Theoretical Physics), E.M.S. Publishing House, 2006 | Zbl

[47] Waldschmidt, M. Diophantine Approximation on Linear Algebraic Groups. Transcendence Properties of the Exponential Function in Several Variables, Springer-Verlag, Berlin, 2000 | MR | Zbl

  • Dutykh, Denys; Verger-Gaugry, Jean-Louis On a Class of Lacunary Almost Newman Polynomials Modulo P and Density Theorems, Uniform distribution theory, Volume 17 (2022) no. 1, p. 29 | DOI:10.2478/udt-2022-0007
  • Wang, Wen-Ya; Chen, Hui-Qin; Guo, Zhong-Kai The points with dense orbit under the β-expansions of different bases, Chaos, Solitons Fractals, Volume 146 (2021), p. 110840 | DOI:10.1016/j.chaos.2021.110840
  • Dutykh, Denys; Verger-Gaugry, Jean-Louis Alphabets, rewriting trails and periodic representations in algebraic bases, Research in Number Theory, Volume 7 (2021) no. 4 | DOI:10.1007/s40993-021-00290-w
  • KANEKO, HAJIME On the beta-expansions of 1 and algebraic numbers for a Salem number beta, Ergodic Theory and Dynamical Systems, Volume 35 (2015) no. 4, p. 1243 | DOI:10.1017/etds.2013.99
  • Abbes, F.; Hbaib, M.; Merkhi, M. β -expansion and transcendence inFq((x−1)), Theoretical Computer Science, Volume 516 (2014), p. 71 | DOI:10.1016/j.tcs.2013.11.017
  • Tan, Bo; Wang, Bao-Wei; Wu, Jun; Xu, Jian Localized Birkhoff average in beta dynamical systems, Discrete Continuous Dynamical Systems - A, Volume 33 (2013) no. 6, p. 2547 | DOI:10.3934/dcds.2013.33.2547
  • Fan, Ai-Hua; Wang, Bao-Wei On the lengths of basic intervals in beta expansions, Nonlinearity, Volume 25 (2012) no. 5, p. 1329 | DOI:10.1088/0951-7715/25/5/1329
  • Bugeaud, Yann On the β-Expansion of an Algebraic Number in an Algebraic Base β, INTEG, Volume 9 (2009) no. 3, p. 215 | DOI:10.1515/integ.2009.021
  • KWON, DOYONG A devil's staircase from rotations and irrationality measures for Liouville numbers, Mathematical Proceedings of the Cambridge Philosophical Society, Volume 145 (2008) no. 3, p. 739 | DOI:10.1017/s0305004108001606
  • Verger-Gaugry, Jean-Louis On the dichotomy of Perron numbers and beta-conjugates, Monatshefte für Mathematik, Volume 155 (2008) no. 3-4, p. 277 | DOI:10.1007/s00605-008-0002-1
  • ADAMCZEWSKI, BORIS; BUGEAUD, YANN Dynamics forβ-shifts and Diophantine approximation, Ergodic Theory and Dynamical Systems, Volume 27 (2007) no. 6, p. 1695 | DOI:10.1017/s0143385707000223

Cité par 11 documents. Sources : Crossref