Soit un morphisme séparé d’espaces adiques de type fini sur un corps non archimédien avec affinoïde et de dimension . Soit un sous-ensemble constructible localement fermé dans et soit le morphisme d’espaces pseudo-adiques induit de . Soit un anneau noethérien de torsion première à la caractéristique résiduelle de et soit un faisceau de -modules localement constant de type fini sur . Il y a une classe naturelle des faisceaux de -modules sur engendrée par des faisceaux de -modules constructibles et des faisceaux de -modules Zariski-constructibles. Nous montrons que le faisceau image directe à support propre est génériquement constructible, et si est localement algébrique, est un élément de . En conséquence, on obtient un théorème de comparaison entre cohomologie -adique d’un schéma séparé de type fini sur et de l’espace adique associé.
Let be a separated morphism of adic spaces of finite type over a non-archimedean field with affinoid and of dimension , let be a locally closed constructible subset of and let be the morphism of pseudo-adic spaces induced by . Let be a noetherian torsion ring with torsion prime to the characteristic of the residue field of the valuation ring of and let be a constant -module of finite type on . There is a natural class of -modules on generated by the constructible -modules and the Zariski-constructible -modules. We show that, for every , the higher direct image sheaf with proper support is generically constructible, and if is locally algebraic, is an element of . As an application we obtain a comparison isomorphism for the -adic cohomology of a separated scheme of finite type over and its associated adic space.
Keywords: Rigid analytic spaces, adic spaces, compactly supported cohomology
Mot clés : espace analytique rigide, espace adique, cohomologie à support compact
@article{AIF_2007__57_3_973_0, author = {Huber, Roland}, title = {A finiteness result for the compactly supported cohomology of rigid analytic varieties, {II}}, journal = {Annales de l'Institut Fourier}, pages = {973--1017}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {57}, number = {3}, year = {2007}, doi = {10.5802/aif.2283}, zbl = {1146.14015}, mrnumber = {2336836}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.2283/} }
TY - JOUR AU - Huber, Roland TI - A finiteness result for the compactly supported cohomology of rigid analytic varieties, II JO - Annales de l'Institut Fourier PY - 2007 SP - 973 EP - 1017 VL - 57 IS - 3 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.2283/ DO - 10.5802/aif.2283 LA - en ID - AIF_2007__57_3_973_0 ER -
%0 Journal Article %A Huber, Roland %T A finiteness result for the compactly supported cohomology of rigid analytic varieties, II %J Annales de l'Institut Fourier %D 2007 %P 973-1017 %V 57 %N 3 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.2283/ %R 10.5802/aif.2283 %G en %F AIF_2007__57_3_973_0
Huber, Roland. A finiteness result for the compactly supported cohomology of rigid analytic varieties, II. Annales de l'Institut Fourier, Tome 57 (2007) no. 3, pp. 973-1017. doi : 10.5802/aif.2283. http://archive.numdam.org/articles/10.5802/aif.2283/
[1] Etale cohomology for p-adic analytic spaces (1994) (handwritten notes of a talk at Toulouse)
[2] Commutative Algebra, Hermann, Paris, 1972 | MR
[3] Cohomologie étale, Lecture Notes Math., 569, Springer, Berlin Heidelberg New York, 1977 | MR
[4] Etale cohomology and the Weil Conjecture, Springer, Berlin Heidelberg New York, 1988 | MR | Zbl
[5] Éléments de Géométrie Algébrique, Publ. Math., Volume 11 (1961), pp. 167 | Numdam
[6] Revêtements Étales et Groupe Fondamental, Lecture Notes Math., 224, Springer, Berlin Heidelberg New York, 1971 | MR
[7] Continuous valuations, Math. Z., Volume 212 (1993), pp. 445-477 | DOI | MR | Zbl
[8] A generalization of formal schemes and rigid analytic varieties, Math. Z., Volume 217 (1994), pp. 513-551 | DOI | MR | Zbl
[9] Etale Cohomology of Rigid Analytic Varieties and Adic Spaces, Vieweg, Braunschweig Wiesbaden, 1996 | MR | Zbl
[10] A comparison theorem for -adic cohomology, Compos. Math., Volume 112 (1998), pp. 217-235 | DOI | MR | Zbl
[11] A finiteness result for the compactly supported cohomology of rigid analytic varieties, J. Alg. Geom., Volume 7 (1998), pp. 313-357 | MR | Zbl
[12] On valuation spectra, Contemporary Mathematics, Volume 115 (1994), pp. 167-206 | MR | Zbl
[13] Bewertungsspektrum und rigide Geometrie, Regensburger Mathematische Schriften [Regensburg Mathematical Publications], 23, Universität Regensburg Fachbereich Mathematik, 1993 | MR | Zbl
[14] Der Endlichkeitssatz für eigentliche Abbildungen in der nichtarchimedischen Funktionentheorie, Invent. math., Volume 2 (1967), pp. 191-214 | DOI | MR | Zbl
[15] Über eigentliche Familien algebraischer Varietäten über affinoiden Räumen, Schr. Math. Inst. Univ. Münster (2) (1974) no. Heft 7, pp. iv+72 | MR
[16] Riemann’s existence problem for a p-adic field, Invent. math., Volume 111 (1993), pp. 309-330 | DOI | MR | Zbl
[17] The structure of proper p-adic groups, J. reine angew. Math., Volume 408 (1995), pp. 167-219 | DOI | MR | Zbl
[18] Local monodromy in non-archimedean analytic geometry, Publ. Math., Volume 102 (2006), pp. 167-280 | DOI | Numdam | MR | Zbl
[19] Critères de platitude et de projectivité, Invent. math., Volume 13 (1971), pp. 1-89 | DOI | MR | Zbl
[20] Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier, Volume 6 (1956), pp. 1-42 | DOI | Numdam | MR | Zbl
[21] Deformation spaces of one-dimensional formal modules and their cohomology (2006) (preprint)
Cité par Sources :