Forms of an affinoid disc and ramification
[Formes d’un disque affinoïde et ramification]
Annales de l'Institut Fourier, Tome 65 (2015) no. 3, pp. 1301-1347.

Soit k un corps non archimédien complet et soit X un disque k-affinoïde fermé. Nous classifions les formes modérément ramifiées de X. Nous généralisons quelques résultats classiques de P. Russell sur les formes inséparables d’une droite affine et nous construisons des familles explicites des formes sauvagement ramifiées de X. Finalement, nous déterminons le groupe des classes et le groupe de Grothendieck de quelques formes de X.

Let k be a complete nonarchimedean field and let X be an affinoid closed disc over k. We classify the tamely ramified twisted forms of X. Generalizing classical work of P. Russell on inseparable forms of the affine line we construct explicit families of wildly ramified forms of X. We finally compute the class group and the Grothendieck group of forms of X in certain cases.

DOI : https://doi.org/10.5802/aif.2957
Classification : 14G22,  13B02,  16W70
Mots clés : form twisté, disque affinoïde, ramification
@article{AIF_2015__65_3_1301_0,
     author = {Schmidt, Tobias},
     title = {Forms of an affinoid disc and ramification},
     journal = {Annales de l'Institut Fourier},
     pages = {1301--1347},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {65},
     number = {3},
     year = {2015},
     doi = {10.5802/aif.2957},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.2957/}
}
TY  - JOUR
AU  - Schmidt, Tobias
TI  - Forms of an affinoid disc and ramification
JO  - Annales de l'Institut Fourier
PY  - 2015
DA  - 2015///
SP  - 1301
EP  - 1347
VL  - 65
IS  - 3
PB  - Association des Annales de l’institut Fourier
UR  - http://archive.numdam.org/articles/10.5802/aif.2957/
UR  - https://doi.org/10.5802/aif.2957
DO  - 10.5802/aif.2957
LA  - en
ID  - AIF_2015__65_3_1301_0
ER  - 
Schmidt, Tobias. Forms of an affinoid disc and ramification. Annales de l'Institut Fourier, Tome 65 (2015) no. 3, pp. 1301-1347. doi : 10.5802/aif.2957. http://archive.numdam.org/articles/10.5802/aif.2957/

[1] Auslander, M.; Buchsbaum, D. A. Homological dimension in local rings, Trans. Amer. Math. Soc., Volume 85 (1957), pp. 390-405 | Article | MR 86822 | Zbl 0078.02802

[2] Auslander, M.; Buchsbaum, D. A. Unique factorization in regular local rings, Proc. Nat. Acad. Sci. U.S.A., Volume 45 (1959), pp. 733-734 | Article | MR 103906 | Zbl 0084.26504

[3] Baba, K. On p-radical descent of higher exponent, Osaka J. Math., Volume 18 (1981) no. 3, pp. 725-748 | MR 635730 | Zbl 0478.13001

[4] Bass, H. Algebraic K -theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968, pp. xx+762 | MR 249491 | Zbl 0174.30302

[5] Berkovich, Vladimir G. Spectral theory and analytic geometry over non-archimedean fields, Math. Surveys and Monographs, 33, American Mathematical Society, Providence, Rhode Island, 1990 | MR 1070709 | Zbl 0715.14013

[6] Bosch, S.; Güntzer, U.; Remmert, R. Non-Archimedean analysis, Springer-Verlag, Berlin, 1984 | MR 746961 | Zbl 0539.14017

[7] Bourbaki, N. Commutative algebra. Chapters 1–7, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1998 | MR 1727221 | Zbl 0719.12001

[8] Conrad, B.; Temkin, M. Descent for non-archimedean analytic spaces. (http://math.huji.ac.il/~temkin/papers/Descent.pdf)

[9] Demazure, M.; Gabriel, P. Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs, Masson & Cie, Éditeur, Paris, 1970, pp. xxvi+700 (Avec un appendice ıt Corps de classes local par Michiel Hazewinkel) | MR 302656 | Zbl 0203.23401

[10] Ducros, A. Toute forme modérément ramifiée d’un polydisque ouvert est triviale, Math. Z., Volume 273 (2013) no. 1-2, pp. 331-353 | Article | MR 3010163 | Zbl 1264.14035

[11] Jacobson, N. Lectures in abstract algebra. III, Springer-Verlag, New York, 1975, pp. xi+323 (Theory of fields and Galois theory, Graduate Texts in Math., No. 32) | MR 392906 | Zbl 0326.00001

[12] Kambayashi, T.; Miyanishi, M.; Takeuchi, M. Unipotent algebraic groups, Lecture Notes in Mathematics, Vol. 414, Springer-Verlag, Berlin, 1974, pp. v+165 | MR 376696 | Zbl 0294.14022

[13] Kaplansky, I. Maximal fields with valuations, Duke Math. J., Volume 9 (1942), pp. 303-321 | Article | MR 6161 | Zbl 0063.03135

[14] Knus, M.-A.; Ojanguren, M. Théorie de la descente et algèbres d’Azumaya, Lecture Notes in Math., Vol. 389, Springer-Verlag, Berlin, 1974, pp. iv+163 | MR 417149 | Zbl 0284.13002

[15] Lang, Serge Algebra, Graduate Texts in Mathematics, 211, Springer-Verlag, New York, 2002, pp. xvi+914 | MR 1878556 | Zbl 0984.00001

[16] Levi, F. W. Ordered groups, Proc. Indian Acad. Sci., Sect. A., Volume 16 (1942), pp. 256-263 | MR 7779 | Zbl 0061.03403

[17] Li, H.; Van den Bergh, M.; Van Oystaeyen, F. Note on the K 0 of rings with Zariskian filtration, K-Theory, Volume 3 (1990) no. 6, pp. 603-606 | Article | MR 1071897 | Zbl 0709.16023

[18] Li, H.; van Oystaeyen, F. Global dimension and Auslander regularity of Rees rings, Bull. Math. Soc. Belgique, Volume (serie A) XLIII (1991), pp. 59-87 | MR 1315771 | Zbl 0753.16003

[19] Li, H.; van Oystaeyen, F. Zariskian filtrations, K-Monographs in Mathematics, 2, Kluwer Academic Publishers, Dordrecht, 1996, pp. x+252 | Zbl 0862.16027

[20] Matsumura, H. Commutative ring theory, Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press, Cambridge, 1986, pp. xiv+320 | MR 879273 | Zbl 0603.13001

[21] McConnell, J. C.; Robson, J. C. Noncommutative Noetherian rings, Pure and Applied Mathematics (New York), John Wiley & Sons Ltd., Chichester, 1987, pp. xvi+596 | MR 934572 | Zbl 0644.16008

[22] Năstăsescu, C.; Van Oystaeyen, F. Methods of graded rings, Lecture Notes in Mathematics, 1836, Springer-Verlag, Berlin, 2004, pp. xiv+304 | MR 2046303 | Zbl 1043.16017

[23] Quillen, D. Higher algebraic K-theory. I, Algebraic K -theory, I: Higher K -theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), Springer, Berlin, 1973, p. 85-147. Lecture Notes in Math., Vol. 341 | MR 338129 | Zbl 0292.18004

[24] Rémy, B.; Thuillier, A.; Werner, A. Bruhat-Tits theory from Berkovich’s point of view. I. Realizations and compactifications of buildings, Ann. Sci. Éc. Norm. Supér. (4), Volume 43 (2010) no. 3, pp. 461-554 | Numdam | MR 2667022 | Zbl 1198.51006

[25] Russell, P. Forms of the affine line and its additive group, Pacific J. Math., Volume 32 (1970), pp. 527-539 | Article | MR 265367 | Zbl 0199.24502

[26] Samuel, P. Classes de diviseurs et dérivées logarithmiques, Topology, Volume 3 (1964) no. suppl. 1, pp. 81-96 | Article | MR 166213 | Zbl 0127.26002

[27] Serre, J.-P. Local fields, Graduate Texts in Math., 67, Springer-Verlag, New York, 1979, pp. viii+241 | MR 554237 | Zbl 0423.12016

[28] Serre, J.-P. Galois cohomology, Springer Monographs in Math., Springer-Verlag, Berlin, 2002, pp. x+210 | MR 1867431 | Zbl 1004.12003

[29] Temkin, M. On local properties of non-Archimedean analytic spaces, Math. Ann., Volume 318 (2000) no. 3, pp. 585-607 | Article | MR 1800770 | Zbl 0972.32019

[30] Temkin, M. On local properties of non-Archimedean analytic spaces. II, Israel J. Math., Volume 140 (2004), pp. 1-27 | Article | MR 2054837 | Zbl 1066.32025

[31] Waterhouse, W. C. Introduction to affine group schemes, Graduate Texts in Mathematics, 66, Springer-Verlag, New York, 1979, pp. xi+164 | MR 547117 | Zbl 0442.14017

[32] Weibel, C. An introduction to algebraic K-theory (http://www.math.rutgers.edu/~weibel/Kbook.html) | MR 3076731

Cité par Sources :