Let be a complex reductive group and a -module. Then the th jet scheme acts on the th jet scheme for all . We are interested in the invariant ring and whether the map induced by the categorical quotient map is an isomorphism, surjective, or neither. Using Luna’s slice theorem, we give criteria for to be an isomorphism for all , and we prove this when , , , or and is a sum of copies of the standard module and its dual, such that is smooth or a complete intersection. We classify all representations of for which is surjective or an isomorphism. Finally, we give examples where is surjective for but not for finite , and where it is surjective but not injective.
Soient un groupe réductif complexe et un -module. Alors , le schéma des jets d’ordre de , opère dans , le schéma des jets d’ordre de , pour tout . Nous nous intéressons à l’anneau des invariants et au morphisme induit par le morphisme du quotient catégorique : ce morphisme est-il un isomorphisme, surjectif, ou non ? En utilisant le théorème du slice de Luna, nous obtenons des critères pour que soit un isomorphisme pour tout . Nous montrons que c’est bien le cas lorsque , , , ou et est un somme directe de copies du module standard et de son dual, pourvu que soit lisse ou une intersection complète. Nous classifions toutes les représentations de telles que soit surjectif ou un isomorphisme. Enfin, nous donnons des exemples où est surjectif pour mais non surjectif pour fini, et d’autres exemples où est surjectif mais non injectif.
Keywords: jet schemes, classical invariant theory
Mot clés : schémas des jets, théorie classique des invariants
@article{AIF_2015__65_6_2571_0, author = {Linshaw, Andrew R. and Schwarz, Gerald W. and Song, Bailin}, title = {Jet schemes and invariant theory}, journal = {Annales de l'Institut Fourier}, pages = {2571--2599}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {65}, number = {6}, year = {2015}, doi = {10.5802/aif.2996}, zbl = {1342.13009}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.2996/} }
TY - JOUR AU - Linshaw, Andrew R. AU - Schwarz, Gerald W. AU - Song, Bailin TI - Jet schemes and invariant theory JO - Annales de l'Institut Fourier PY - 2015 SP - 2571 EP - 2599 VL - 65 IS - 6 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.2996/ DO - 10.5802/aif.2996 LA - en ID - AIF_2015__65_6_2571_0 ER -
%0 Journal Article %A Linshaw, Andrew R. %A Schwarz, Gerald W. %A Song, Bailin %T Jet schemes and invariant theory %J Annales de l'Institut Fourier %D 2015 %P 2571-2599 %V 65 %N 6 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.2996/ %R 10.5802/aif.2996 %G en %F AIF_2015__65_6_2571_0
Linshaw, Andrew R.; Schwarz, Gerald W.; Song, Bailin. Jet schemes and invariant theory. Annales de l'Institut Fourier, Volume 65 (2015) no. 6, pp. 2571-2599. doi : 10.5802/aif.2996. http://archive.numdam.org/articles/10.5802/aif.2996/
[1] Stringy Hodge numbers of varieties with Gorenstein canonical singularities, Integrable systems and algebraic geometry (Kobe/Kyoto, 1997), World Sci. Publ., River Edge, NJ, 1998, pp. 1-32 | MR | Zbl
[2] Chiral algebras, American Mathematical Society Colloquium Publications, 51, American Mathematical Society, Providence, RI, 2004, pp. vi+375 | MR | Zbl
[3] Vertex algebras, Kac-Moody algebras, and the Monster, Proc. Nat. Acad. Sci. U.S.A., Volume 83 (1986) no. 10, pp. 3068-3071 | DOI | MR | Zbl
[4] Singularités rationnelles et quotients par les groupes réductifs, Invent. Math., Volume 88 (1987) no. 1, pp. 65-68 | DOI | MR | Zbl
[5] An introduction to motivic integration, Strings and geometry (Clay Math. Proc.), Volume 3, Amer. Math. Soc., Providence, RI, 2004, pp. 203-225 | MR | Zbl
[6] Germs of arcs on singular algebraic varieties and motivic integration, Invent. Math., Volume 135 (1999) no. 1, pp. 201-232 | DOI | MR | Zbl
[7] Geometry on arc spaces of algebraic varieties, European Congress of Mathematics, Vol. I (Barcelona, 2000) (Progr. Math.), Volume 201, Birkhäuser, Basel, 2001, pp. 327-348 | MR | Zbl
[8] Invariants of -jet actions, Houston J. Math., Volume 10 (1984) no. 2, pp. 159-168 | MR | Zbl
[9] Jet schemes and singularities, Algebraic geometry—Seattle 2005. Part 2 (Proc. Sympos. Pure Math.), Volume 80, Amer. Math. Soc., Providence, RI, 2009, pp. 505-546 | DOI | MR | Zbl
[10] Vertex algebras and algebraic curves, Mathematical Surveys and Monographs, 88, American Mathematical Society, Providence, RI, 2001, pp. xii+348 | DOI | MR | Zbl
[11] Vertex operator algebras and the Monster, Pure and Applied Mathematics, 134, Academic Press, Inc., Boston, MA, 1988, pp. liv+508 | MR | Zbl
[12] The Nash problem on arc families of singularities, Duke Math. J., Volume 120 (2003) no. 3, pp. 601-620 | DOI | MR | Zbl
[13] Vertex algebras for beginners, University Lecture Series, 10, American Mathematical Society, Providence, RI, 1998, pp. vi+201 | MR | Zbl
[14] Differential algebra and algebraic groups, Academic Press, New York-London, 1973, pp. xviii+446 (Pure and Applied Mathematics, Vol. 54) | MR | Zbl
[15] String cohomology, 1995 (Lecture at Orsay)
[16] Geometrische Methoden in der Invariantentheorie, Aspects of Mathematics, D1, Friedr. Vieweg & Sohn, Braunschweig, 1984, pp. x+308 | DOI | MR | Zbl
[17] Arc spaces and the vertex algebra commutant problem, Adv. Math., Volume 277 (2015), pp. 338-364 | DOI | MR
[18] Motivic measures, Astérisque (2002) no. 276, pp. 267-297 (Séminaire Bourbaki, Vol. 1999/2000) | Numdam | MR | Zbl
[19] Slices étales, Sur les groupes algébriques, Soc. Math. France, Paris, 1973, p. 81-105. Bull. Soc. Math. France, Paris, Mémoire 33 | Numdam | MR | Zbl
[20] Chiral de Rham complex. II, Differential topology, infinite-dimensional Lie algebras, and applications (Amer. Math. Soc. Transl. Ser. 2), Volume 194, Amer. Math. Soc., Providence, RI, 1999, pp. 149-188 | MR | Zbl
[21] Chiral de Rham complex, Comm. Math. Phys., Volume 204 (1999) no. 2, pp. 439-473 | DOI | MR | Zbl
[22] Jet schemes of locally complete intersection canonical singularities, Invent. Math., Volume 145 (2001) no. 3, pp. 397-424 (With an appendix by David Eisenbud and Edward Frenkel) | DOI | MR | Zbl
[23] Arc structure of singularities, Duke Math. J., Volume 81 (1995) no. 1, p. 31-38 (1996) (A celebration of John F. Nash, Jr.) | DOI | MR | Zbl
[24] Representations of simple Lie groups with regular rings of invariants, Invent. Math., Volume 49 (1978) no. 2, pp. 167-191 | DOI | MR | Zbl
[25] The global sections of the chiral de Rham complex on a Kummer surface (http://arxiv.org/abs/1312.7386)
[26] Arc spaces, motivic integration and stringy invariants, Singularity theory and its applications (Adv. Stud. Pure Math.), Volume 43, Math. Soc. Japan, Tokyo, 2006, pp. 529-572 | MR | Zbl
[27] The Classical Groups. Their Invariants and Representations, Princeton University Press, Princeton, N.J., 1939, pp. xii+302 | MR | Zbl
Cited by Sources: