We study curvature restrictions of Levi-flat real hypersurfaces in complex projective planes, whose existence is in question. We focus on its totally real Ricci curvature, the Ricci curvature of the real hypersurface in the direction of the Reeb vector field, and show that it cannot be greater than along a Levi-flat real hypersurface. We rely on a finiteness theorem for the space of square integrable holomorphic 2-forms on the complement of the Levi-flat real hypersurface, where the curvature plays the role of the size of the infinitesimal holonomy of its Levi foliation.
Nous étudions des restrictions sur une courbure des hypersurfaces réelles Levi-plates dans des plans projectifs complexes, dont l’existence est en question. Nous nous focalisons sur sa courbure de Ricci totalement réelle, c’est-â-dire la courbure de Ricci de l’hypersurface réelle dans la direction du champ de Reeb, et nous démontrons qu’elle ne peut pas être supérieure à le long de l’hypersurface réelle Levi-plate. Nous nous appuyons sur un théorème de finitude pour l’espace des 2-formes holomorphes de carrés intégrables sur le complément de l’hypersurface réelle Levi-plate, où la courbure joue le rôle de la taille de l’holonomie infinitésimale de son feuilletage de Levi.
Keywords: Levi-flat real hypersurface, totally real Ricci curvature, adjunction formula, integral formula
Mot clés : hypersurface réelle Levi-plate, courbure de Ricci totalement réelle, formule d’adjonction, formule intégrale
@article{AIF_2015__65_6_2547_0, author = {Adachi, Masanori and Brinkschulte, Judith}, title = {Curvature restrictions for {Levi-flat} real hypersurfaces in complex projective planes}, journal = {Annales de l'Institut Fourier}, pages = {2547--2569}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {65}, number = {6}, year = {2015}, doi = {10.5802/aif.2995}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.2995/} }
TY - JOUR AU - Adachi, Masanori AU - Brinkschulte, Judith TI - Curvature restrictions for Levi-flat real hypersurfaces in complex projective planes JO - Annales de l'Institut Fourier PY - 2015 SP - 2547 EP - 2569 VL - 65 IS - 6 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.2995/ DO - 10.5802/aif.2995 LA - en ID - AIF_2015__65_6_2547_0 ER -
%0 Journal Article %A Adachi, Masanori %A Brinkschulte, Judith %T Curvature restrictions for Levi-flat real hypersurfaces in complex projective planes %J Annales de l'Institut Fourier %D 2015 %P 2547-2569 %V 65 %N 6 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.2995/ %R 10.5802/aif.2995 %G en %F AIF_2015__65_6_2547_0
Adachi, Masanori; Brinkschulte, Judith. Curvature restrictions for Levi-flat real hypersurfaces in complex projective planes. Annales de l'Institut Fourier, Volume 65 (2015) no. 6, pp. 2547-2569. doi : 10.5802/aif.2995. http://archive.numdam.org/articles/10.5802/aif.2995/
[1] A global estimate for the Diederich–Fornaess index of weakly pseudoconvex domains (to appear in Nagoya Math. J.)
[2] A local expression of the Diederich–Fornaess exponent and the exponent of conformal harmonic measures, Bull. Braz. Math. Soc. (N.S.), Volume 46 (2015) no. 1, pp. 65-79 | DOI | MR
[3] Real hypersurfaces of with non-negative Ricci curvature, Proc. Amer. Math. Soc., Volume 124 (1996) no. 1, pp. 269-274 | MR | Zbl
[4] Minimal sets of foliations on complex projective spaces, Inst. Hautes Études Sci. Publ. Math., Volume 68 (1988), pp. 187-203 | Numdam | MR | Zbl
[5] A new proof of the Takeuchi theorem, Lecture notes of Seminario Interdisciplinare di Matematica. Vol. IV, S.I.M. Dep. Mat. Univ. Basilicata, Potenza, 2005, pp. 65-72 | MR | Zbl
[6] Minimaux des feuilletages algébriques de , Ann. Inst. Fourier (Grenoble), Volume 43 (1993) no. 5, pp. 1535-1543 | Numdam | MR | Zbl
[7] Estimations pour l’opérateur d’un fibré vectoriel holomorphe semi-positif au-dessus d’une variété kählérienne complète, Ann. Sci. École Norm. Sup. (4), Volume 15 (1982) no. 3, pp. 457-511 | Numdam | MR | Zbl
[8] Hypersurfaces Levi-plates immergées dans les surfaces complexes de courbure positive, Ann. Sci. École Norm. Sup. (4), Volume 38 (2005) no. 1, pp. 57-75 | Numdam | MR | Zbl
[9] The Diederich–Fornæss exponent and non-existence of Stein domains with Levi-flat boundaries (J. Geom. Anal., published online on 25 November 2014.)
[10] Holomorphic bisectional curvature, J. Differential Geom., Volume 1 (1967), pp. 225-233 | MR | Zbl
[11] On Kähler manifolds of positive bisectional curvature and a theorem of Hartogs, Abh. Math. Sem. Univ. Hamburg, Volume 47 (1978), pp. 171-185 | MR | Zbl
[12] The extension problem in complex analysis. II. Embeddings with positive normal bundle, Amer. J. Math., Volume 88 (1966), pp. 366-446 | MR | Zbl
[13] Regularity of on pseudoconcave compacts and applications, Asian J. Math., Volume 4 (2000) no. 4, pp. 855-883 | MR | Zbl
[14] estimates and existence theorems for the operator, Acta Math., Volume 113 (1965), pp. 89-152 | MR | Zbl
[15] Régularité de l’opérateur et théorème de Siu sur la non-existence d’hypersurfaces Levi-plates dans l’espace projectif complexe , , C. R. Math. Acad. Sci. Paris, Volume 346 (2008) no. 7-8, pp. 395-400 | MR | Zbl
[16] A note on projective Levi flats and minimal sets of algebraic foliations, Ann. Inst. Fourier (Grenoble), Volume 49 (1999) no. 4, pp. 1369-1385 | Numdam | MR | Zbl
[17] Levi form of logarithmic distance to complex submanifolds and its application to developability, Complex analysis in several variables—Memorial Conference of Kiyoshi Oka’s Centennial Birthday (Adv. Stud. Pure Math.), Volume 42, Math. Soc. Japan, Tokyo, 2004, pp. 203-207 | MR | Zbl
[18] Kählerity and pseudoconvexity Abstracts for Complex Geometry 2010 (Mabuchi 60), Osaka, 2010, available at http://www.math.sci.osaka-u.ac.jp/~mabuchi/files/Ohsawa.pdf (in Japanese)
[19] Bounded p.s.h. functions and pseudoconvexity in Kähler manifold, Nagoya Math. J., Volume 149 (1998), pp. 1-8 | MR | Zbl
[20] Nonexistence of smooth Levi-flat hypersurfaces in complex projective spaces of dimension , Ann. of Math. (2), Volume 151 (2000) no. 3, pp. 1217-1243 | MR | Zbl
[21] Lectures on the -Sobolev theory of the -Neumann problem, ESI Lectures in Mathematics and Physics, European Mathematical Society (EMS), Zürich, 2010, pp. viii+206 | MR | Zbl
[22] Domaines pseudoconvexes infinis et la métrique riemannienne dans un espace projectif, J. Math. Soc. Japan, Volume 16 (1964), pp. 159-181 | MR | Zbl
Cited by Sources: