Height one specializations of Selmer groups
[Spécialisations de hauteur un des groupes de Selmer]
Annales de l'Institut Fourier, Tome 69 (2019) no. 1, pp. 303-334.

Nous donnons des applications de l’étude du comportement des groupes de Selmer sous la spécialisation. Nous considérons les groupes de Selmer associés à de représentations galoisiennes de dimension 4 provenant

  • (i) du produit tensoriel de deux familles cuspidales de Hida F et G,
  • (ii) de la déformation cyclotomique du dernier,
  • (iii) du produit tensoriel d’une forme cuspidale f par une famille de Hida G, où f est une spécialisation classique de F de poids k2.

Nous démontrons des théorèmes de contrôle qui relient

  • (a) le groupe de Selmer associé au produit tensoriel des familles de Hida F et G au groupe de Selmer associé à sa déformation cyclotomique,
  • (b) le groupe de Selmer associé au produit tensoriel de f par G au groupe de Selmer associé au produit tensoriel de F et G.

Du côté analytique des conjectures principales, Hida a construit des fonctions L p-adiques de Rankin–Selberg à une variable, à deux variables et à trois variables. Nos résultats sur la spécialisation nous permettent de vérifier les résultats de Hida qui relient

  • (a) la fonction L p-adique à deux variables à la fonction L p-adique à trois variables, et
  • (b) la fonction L p-adique à une variables à la fonction L p-adique à deux variables,

et nos théorèmes de contrôle pour les groupes de Selmer sont complètement compatibles avec les conjectures principales.

We provide applications to studying the behavior of Selmer groups under specialization. We consider Selmer groups associated to 4-dimensional Galois representations coming from

  • (i) the tensor product of two cuspidal Hida families F and G,
  • (ii) its cyclotomic deformation,
  • (iii) the tensor product of a cusp form f and the Hida family G, where f is a classical specialization of F with weight k2.

We prove control theorems to relate

  • (a) the Selmer group associated to the tensor product of Hida families F and G to the Selmer group associated to its cyclotomic deformation, and
  • (b) the Selmer group associated to the tensor product of f and G to the Selmer group associated to the tensor product of F and G.

On the analytic side of the main conjectures, Hida has constructed one variable, two variable and three variable Rankin–Selberg p-adic L-functions. Our specialization results enable us to verify that Hida’s results relating

  • (a) the two variable p-adic L-function to the three variable p-adic L-function, and
  • (b) the one variable p-adic L-function to the two variable p-adic L-function,

and our control theorems for Selmer groups are completely consistent with the main conjectures.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/aif.3244
Classification : 11R23,  11F33,  11F80
Mots clés : théorie d’Iwasawa, théorie de Hida, groupes de Selmer
@article{AIF_2019__69_1_303_0,
     author = {Palvannan, Bharathwaj},
     title = {Height one specializations of Selmer groups},
     journal = {Annales de l'Institut Fourier},
     pages = {303--334},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {69},
     number = {1},
     year = {2019},
     doi = {10.5802/aif.3244},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.3244/}
}
Palvannan, Bharathwaj. Height one specializations of Selmer groups. Annales de l'Institut Fourier, Tome 69 (2019) no. 1, pp. 303-334. doi : 10.5802/aif.3244. http://archive.numdam.org/articles/10.5802/aif.3244/

[1] Böckle, Gebhard On the density of modular points in universal deformation spaces, Am. J. Math., Volume 123 (2001) no. 5, pp. 985-1007 | Article | MR 1854117 | Zbl 0984.11025

[2] Cho, Sheena Deformation rings for induced Galois representations (1999) (Ph. D. Thesis) | MR 2698966

[3] Cho, Sheena; Vatsal, Vinayak Deformations of induced Galois representations, J. Reine Angew. Math., Volume 556 (2003), pp. 79-98 | Article | MR 1971139 | Zbl 1041.11039

[4] Emerton, Matthew; Pollack, Robert; Weston, Tom Variation of Iwasawa invariants in Hida families, Invent. Math., Volume 163 (2006) no. 3, pp. 523-580 | Article | MR 2207234 | Zbl 1093.11065

[5] Gouvêa, Fernando Q. Deforming Galois representations: controlling the conductor, J. Number Theory, Volume 34 (1990) no. 1, pp. 95-113 | Article | MR 1039770 | Zbl 0705.11032

[6] Greenberg, Ralph Iwasawa’s theory and p-adic L-functions for imaginary quadratic fields, Number theory related to Fermat’s last theorem (Progress in Math.), Volume 26, Birkhäuser, 1982, pp. 275-285 | Article | Zbl 0505.12006

[7] Greenberg, Ralph Iwasawa theory and p-adic deformations of motives, Motives (Seattle, WA, 1991) (Proceedings of Symposia in Pure Mathematics), Volume 55 (1994), pp. 193-223 | MR 1265554 | Zbl 0819.11046

[8] Greenberg, Ralph On the structure of certain Galois cohomology groups, Doc. Math. (2006), pp. 335-391 | MR 2290593 | Zbl 1138.11048

[9] Greenberg, Ralph Surjectivity of the global-to-local map defining a Selmer group, Kyoto J. Math., Volume 50 (2010) no. 4, pp. 853-888 | Article | MR 2740696 | Zbl 1230.11133

[10] Greenberg, Ralph On the structure of Selmer groups, Elliptic curves, modular forms and Iwasawa theory (Springer Proc. Math. Stat.), Volume 188, Springer, 2016, pp. 225-252 | Article | MR 3629652 | Zbl 06740243

[11] Greenberg, Ralph; Vatsal, Vinayak On the Iwasawa invariants of elliptic curves, Invent. Math., Volume 142 (2000) no. 1, pp. 17-63 | Article | MR 1784796 | Zbl 1032.11046

[12] Hara, Takashi; Ochiai, Tadashi The cyclotomic Iwasawa main conjecture for Hilbert cuspforms with complex multiplication, Kyoto J. Math., Volume 58 (2018) no. 1, pp. 1-100 | Article | MR 3776280 | Zbl 06873129

[13] Hida, Haruzo A p-adic measure attached to the zeta functions associated with two elliptic modular forms. I, Invent. Math., Volume 79 (1985) no. 1, pp. 159-195 | Article | MR 774534 | Zbl 0573.10020

[14] Hida, Haruzo Galois representations into GL 2 (Z p [[X]]) attached to ordinary cusp forms, Invent. Math., Volume 85 (1986) no. 3, pp. 545-613 | Article | MR 848685 | Zbl 0612.10021

[15] Hida, Haruzo Iwasawa modules attached to congruences of cusp forms, Ann. Sci. Éc. Norm. Supér., Volume 19 (1986) no. 2, pp. 231-273 | Article | MR 868300 | Zbl 0607.10022

[16] Hida, Haruzo A p-adic measure attached to the zeta functions associated with two elliptic modular forms. II, Ann. Inst. Fourier, Volume 38 (1988) no. 3, pp. 1-83 | Article | MR 976685 | Zbl 0645.10028

[17] Hida, Haruzo Elementary theory of L-functions and Eisenstein series, London Mathematical Society Student Texts, 26, Cambridge University Press, 1993, xii+386 pages | Article | MR 1216135 | Zbl 0942.11024

[18] Hida, Haruzo On the search of genuine p-adic modular L-functions for GL (n), Mém. Soc. Math. Fr., Nouv. Sér. (1996) no. 67, pp. 1-110 With a correction to: “On p-adic L-functions of GL(2)×GL(2) over totally real fields”, Ann. Inst. Fourier 41 (1991), no. 2, p. 311–391 | MR 1479362 | Zbl 0897.11015

[19] Hida, Haruzo Global quadratic units and Hecke algebras, Doc. Math., Volume 3 (1998), pp. 273-284 | MR 1650571 | Zbl 0923.11084

[20] Hida, Haruzo Modular forms and Galois cohomology, Cambridge Studies in Advanced Mathematics, 69, Cambridge University Press, 2000, x+343 pages | Article | MR 1779182 | Zbl 0952.11014

[21] Hida, Haruzo; Tilouine, Jacques On the anticyclotomic main conjecture for CM fields, Invent. Math., Volume 117 (1994) no. 1, pp. 89-147 | Article | MR 1269427 | Zbl 0819.11047

[22] Hsieh, Ming-Lun Eisenstein congruence on unitary groups and Iwasawa main conjectures for CM fields, J. Am. Math. Soc., Volume 27 (2014) no. 3, pp. 753-862 | Article | MR 3194494 | Zbl 1317.11108

[23] Kings, Guido; Loeffler, David; Zerbes, Sarah Livia Rankin-Eisenstein classes and explicit reciprocity laws, Camb. J. Math., Volume 5 (2017) no. 1, pp. 1-122 | Article | MR 3637653 | Zbl 06732174

[24] Lei, Antonio; Loeffler, David; Zerbes, Sarah Livia Euler systems for Rankin-Selberg convolutions of modular forms, Ann. Math., Volume 180 (2014) no. 2, pp. 653-771 | Article | MR 3224721 | Zbl 1315.11044

[25] Liu, Qing Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics, 6, Oxford University Press, 2002, xvi+576 pages (Translated from the French by Reinie Erné) | MR 1917232 | Zbl 0996.14005

[26] van Order, Jeanine Rankin-Selberg L-functions in cyclotomic towers, I (2012) (https://arxiv.org/abs/1207.1672)

[27] van Order, Jeanine Rankin-Selberg L-functions in cyclotomic towers, II (2012) (https://arxiv.org/abs/1207.1673)

[28] Palvannan, Bharathwaj On Selmer groups and factoring p-adic L-functions, Int. Math. Res. Not. (2017) (published online, to appear in print.) | Article

[29] The Sage Developers SageMath, the Sage Mathematics Software System (Version 7.2) (http://www.sagemath.org)