Eta and rho invariants on manifolds with edges
[Invariants êta and rho sur variétés stratifiée de profondeur 1]
Annales de l'Institut Fourier, Tome 69 (2019) no. 5, pp. 1955-2035.

Dans cet article, nous démontrons l’existence des invariants êta et des invariants rho de Atiyah–Patodi–Singer et Cheeger–Gromov pour une classe d’opérateurs de type Dirac sur des variétés stratifiées de profondeur 1 munies d’une métrique incomplète de type edge. Notre analyse s’applique, en particulier, à l’opérateur de signature et à l’opérateur de Dirac sur une variété spin. Nous établissons aussi des théorèmes de Atiyah–Patodi–Singer sur des variétés stratifiées de profondeur 1 avec bord et sur leurs revêtements de Galois. Nos arguments s’appuyent sur l’analyse microlocale du développement asymptotique du noyau de la chaleur pour un laplacien de Dirac associé à une métrique incomplète de type edge. Nous donnons des applications de cette analyse à l’étude des propriétés de stabilité des invariants rho que nous avons définit.

We establish existence of eta-invariants as well as of the Atiyah–Patodi–Singer and the Cheeger–Gromov rho-invariants for a class of Dirac operators on an incomplete edge space. Our analysis applies in particular to the signature and the spin Dirac operator. We derive an analogue of the Atiyah–Patodi–Singer index theorem for incomplete edge spaces and their non-compact infinite Galois coverings with edge singular boundary. Our arguments are based on the microlocal analysis of the heat kernel asymptotics associated to the Dirac laplacian of an incomplete edge metric. As an application, we discuss stability results for the two rho-invariants we have defined.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/aif.3287
Classification : 58J20,  58J28
Mots clés : espace stratifiée, métrique incomplète de type edge, varieté spin, opérateur de signature, opérateur spin-Dirac, développement asymptotique du noyau de la chaleur, invariants êta, invariants rho, indice de Fredholm
@article{AIF_2019__69_5_1955_0,
     author = {Piazza, Paolo and Vertman, Boris},
     title = {Eta and rho invariants on manifolds with edges},
     journal = {Annales de l'Institut Fourier},
     pages = {1955--2035},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {69},
     number = {5},
     year = {2019},
     doi = {10.5802/aif.3287},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.3287/}
}
Piazza, Paolo; Vertman, Boris. Eta and rho invariants on manifolds with edges. Annales de l'Institut Fourier, Tome 69 (2019) no. 5, pp. 1955-2035. doi : 10.5802/aif.3287. http://archive.numdam.org/articles/10.5802/aif.3287/

[1] Albin, Pierre A renormalized index theorem for some complete asymptotically regular metrics: The Gauss–Bonnet theorem, Adv. Math., Volume 213 (2007) no. 1, pp. 1-52 | Article | MR 2331237 | Zbl 1195.58008

[2] Albin, Pierre; Gell-Redman, Jesse The index of Dirac operators on incomplete edge spaces, SIGMA, Symmetry Integrability Geom. Methods Appl., Volume 12 (2016), 089, 45 pages | MR 3544861 | Zbl 1378.58020

[3] Albin, Pierre; Gell-Redman, Jesse The index formula for families of Dirac type operators on pseudomanifolds (2017) (https://arxiv.org/abs/1312.4241)

[4] Albin, Pierre; Leichtnam, Éric; Mazzeo, Rafe; Piazza, Paolo The signature package on Witt spaces, Ann. Sci. Éc. Norm. Supér., Volume 45 (2012), pp. 241-310 | Article | MR 2977620 | Zbl 1260.58012

[5] Albin, Pierre; Leichtnam, Éric; Mazzeo, Rafe; Piazza, Paolo The Novikov conjecture on Cheeger spaces, J. Noncommut. Geom., Volume 11 (2017) no. 2, pp. 451-506 | Article | MR 3669110 | Zbl 1375.57034

[6] Albin, Pierre; Leichtnam, Éric; Mazzeo, Rafe; Piazza, Paolo Hodge theory on Cheeger spaces, J. Reine Angew. Math., Volume 744 (2018), pp. 29-102 | MR 3871440 | Zbl 06971597

[7] Albin, Pierre; Rochon, Frédéric Families index for manifolds with hyperbolic cusp singularities, Int. Math. Res. Not., Volume 2009 (2009) no. 4, pp. 625-697 | MR 2480097 | Zbl 1184.58008

[8] Antonini, Paolo The Atiyah–Patodi–Singer index formula for measured foliations, Bull. Sci. Math., Volume 137 (2013) no. 2, pp. 140-176 | Article | MR 3023206 | Zbl 1284.58010

[9] Antonini, Paolo The Atiyah–Patodi–Singer signature formula for measured foliations, J. Reine Angew. Math., Volume 695 (2014), pp. 217-242 | MR 3276159 | Zbl 1305.58014

[10] Antonini, Paolo Boundary integral for the Ramachandran index, Rend. Semin. Mat. Univ. Padova, Volume 131 (2014), pp. 1-14 | Article | MR 3217747 | Zbl 1314.19007

[11] Antonini, Paolo; Azzali, Sara; Skandalis, Georges Flat bundles, von Neumann algebras and K-theory with /-coefficients, J. K-Theory, Volume 13 (2014) no. 2, pp. 275-303 | Article | MR 3189427 | Zbl 1315.46077

[12] Antonini, Paolo; Azzali, Sara; Skandalis, Georges Bivariant K-theory with /-coefficients and rho classes of unitary representations, J. Funct. Anal., Volume 270 (2016) no. 1, pp. 447-481 | Article | MR 3419768 | Zbl 1352.46063

[13] Atiyah, Michael F. Elliptic operators, discrete groups and von Neumann algebras, Analysis and Topology (Orsay, 1974) (Astérisque), Volume 32–33, Société Mathématique de France, 1976, pp. 43-72 | Zbl 0323.58015

[14] Atiyah, Michael F.; Patodi, Vijay K.; Singer, Isadore M. Spectral asymmetry and Riemannian geometry. I, Math. Proc. Camb. Philos. Soc., Volume 77 (1975), pp. 43-69 | Article | MR 397797 | Zbl 0297.58008

[15] Atiyah, Michael F.; Patodi, Vijay K.; Singer, Isadore M. Spectral asymmetry and Riemannian geometry. II, Math. Proc. Camb. Philos. Soc., Volume 78 (1975) no. 3, pp. 405-432 | Article | MR 397798 | Zbl 0314.58016

[16] Atiyah, Michael F.; Patodi, Vijay K.; Singer, Isadore M. Spectral asymmetry and Riemannian geometry. III, Math. Proc. Camb. Philos. Soc., Volume 79 (1976) no. 1, pp. 71-99 | Article | MR 397799 | Zbl 0325.58015

[17] Azzali, Sara; Wahl, Charlotte Spectral flow, index and the signature operator, J. Topol. Anal., Volume 3 (2011) no. 1, p. 37-37 | Article | MR 2784763 | Zbl 1216.58007

[18] Bei, Francesco Poincare duality, Hilbert complexes and geometric applications, Adv. Math., Volume 267 (2014), pp. 121-175 | MR 3269177 | Zbl 1301.53031

[19] Benameur, Moulay-Tahar; Roy, Indrava The Higson-Roe exact sequence and 2 eta invariants (2014) (https://arxiv.org/abs/1409.2717)

[20] Berline, Nicole; Getzler, Ezra; Vergne, Michèle Heat kernels and Dirac operators, Grundlehren Text Editions, Springer, 2004 | Zbl 1037.58015

[21] Bismut, Jean-Michel; Cheeger, Jeff Families index for manifolds with boundary, superconnections and cones I and II, J. Funct. Anal., Volume 89 (1990) no. 2, pp. 313-363 | Article | MR 1052337 | Zbl 0696.53021

[22] Bismut, Jean-Michel; Cheeger, Jeff Families index for manifolds with boundary, superconnections and cones. II: The Chern character, J. Funct. Anal., Volume 90 (1990) no. 2, pp. 306-354 | Article | MR 1052337 | Zbl 0711.53023

[23] Bismut, Jean-Michel; Freed, Daniel S. The analysis of elliptic families II: Dirac operators, êta invariants, and the holonomy theorem, Commun. Math. Phys., Volume 107 (1986), pp. 103-163 | Zbl 0657.58038

[24] Botvinnik, Boris; Gilkey, Peter B. The eta invariant and metrics of positive scalar curvature, Math. Ann., Volume 302 (1995) no. 3, pp. 507-517 | MR 1339924 | Zbl 0835.58034

[25] Botvinnik, Boris; Gilkey, Peter B. The eta invariant and the Gromov–Lawson conjecture for elementary Abelian groups of odd order, Topology Appl., Volume 80 (1997) no. 1-2, pp. 43-53 | Article | MR 1469465 | Zbl 0896.58060

[26] Branson, Thomas P.; Gilkey, Peter B. Residues of the eta function for an operator of Dirac type, J. Funct. Anal., Volume 108 (1992) no. 1, pp. 47-87 | MR 1174158 | Zbl 0756.58048

[27] Brasselet, Jean Paul; Hector, Gilbert; Saralegi, Martin Theoreme de Rham pour les varietes stratifiees, Ann. Global Anal. Geom., Volume 9 (1991) no. 3, pp. 211-243 | Article | MR 1143404 | Zbl 0733.57010

[28] Braverman, Maxim; Carey, Alan; Farber, Michael; Mathai, Varghese L 2 torsion without the determinant class condition and extended L 2 cohomology, Commun. Contemp. Math., Volume 7 (2005) no. 4, pp. 421-462 | Article | MR 2166660 | Zbl 1079.55015

[29] Brüning, Jochen The signature operator on manifolds with a conical singular stratum, From probability to geometry II (Astérisque), Volume 328, Société Mathématique de France, 2009, pp. 1-44 | Zbl 1208.53046

[30] Brüning, Jochen; Seeley, Robert An index theorem for first order regular singular operators, Am. J. Math., Volume 110 (1988) no. 4, pp. 659-714 | Article | MR 955293 | Zbl 0664.58035

[31] Bunke, Ulrich On the gluing problem for the eta-invariant, J. Differ. Geom., Volume 41 (1995) no. 2, pp. 397-448 | MR 1331973 | Zbl 0821.58037

[32] Carey, Alan; Mathai, Varghese L 2 -torsion invariants, J. Funct. Anal., Volume 110 (1992) no. 2, pp. 337-409 | MR 1194991 | Zbl 0771.57009

[33] Chang, Stanley; Weinberger, Shmuel On Invariants of Hirzebruch and Cheeger–Gromov, Geom. Topol., Volume 7 (2003), pp. 311-319 | Article | MR 1988288 | Zbl 1037.57028

[34] Cheeger, Jeff Spectral geometry of singular Riemannian spaces, J. Differ. Geom., Volume 18 (1983) no. 4, pp. 575-657 | Article | MR 730920 | Zbl 0529.58034

[35] Cheeger, Jeff η-invariants, the adiabatic approximation and conical singularities. I. The adiabatic approximation, J. Differ. Geom., Volume 26 (1987) no. 1, pp. 175-221 | MR 892036 | Zbl 0623.58021

[36] Cheeger, Jeff; Gromov, Mikhael Bounds on the von Neumann dimension of L 2 cohomology and the Gauss Bonnet theorem for open manifolds, J. Differ. Geom., Volume 21 (1985), pp. 1-34 | Article | MR 806699 | Zbl 0614.53034

[37] Chou, Arthur W. The Dirac operator on spaces with conical singularities and positive scalar curvatures, Trans. Am. Math. Soc., Volume 289 (1985), pp. 1-40 | Article | MR 779050 | Zbl 0559.58024

[38] Fedosov, Boris; Schulze, Bert-Wolfgang; Tarkhanov, Nikolai The index of elliptic operators on manifolds with conical points, Sel. Math., New Ser., Volume 5 (1999) no. 4, pp. 467-506 | Article | MR 1740679 | Zbl 0951.58026

[39] Gilkey, Peter B. The residue of the global η function at the origin, Adv. Math., Volume 40 (1981) no. 3, pp. 290-307 | Article | MR 624667 | Zbl 0469.58015

[40] Gilkey, Peter B. Invariance theory, the heat equation, and the Atiyah-Singer index theorem, Mathematics Lecture Series, 11, Publish or Perish, 1984 | MR 783634 | Zbl 0565.58035

[41] Gilkey, Peter B. The eta-invariant for even dimensional PIN c manifolds, Adv. Math., Volume 58 (1985), pp. 243-284 | Article | MR 815358 | Zbl 0602.58041

[42] Gilkey, Peter B. The eta invariant of pin manifolds with cyclic fundamental groups, Period. Math. Hung., Volume 36 (1998) no. 2-3, pp. 139-170 | Article | MR 1694601 | Zbl 0965.58024

[43] Gilkey, Peter B.; Smith, Lance The eta invariant for a class of elliptic boundary value problems, Commun. Pure Appl. Math., Volume 36 (1983) no. 1, pp. 85-131 | Article | MR 680084 | Zbl 0512.58035

[44] Goette, Sebastian Equivariant η-invariants on homogeneous spaces, Math. Z., Volume 232 (1999) no. 1, pp. 1-42 | MR 1714278 | Zbl 0941.58016

[45] Goette, Sebastian Equivariant η-invariants and η-forms, J. Reine Angew. Math., Volume 526 (2000), pp. 181-236 | MR 1778304 | Zbl 0974.58021

[46] Goette, Sebastian Eta invariants of homogeneous spaces, Pure Appl. Math. Q., Volume 5 (2009) no. 3, pp. 915-946 | Article | MR 2532710 | Zbl 1185.58010

[47] Goette, Sebastian Computations and applications of eta-invariants, Global differential geometry (Springer Proceedings in Mathematics), Volume 17, Springer, 2012, pp. 401-433 | Article | MR 3289849 | Zbl 1260.58013

[48] Grieser, Daniel Basics of the b-calculus, Approaches to singular analysis (Operator Theory: Advances and Applications), Volume 125, Birkhäuser, 2001, pp. 30-84 | Article | MR 1827170 | Zbl 0987.58011

[49] Higson, Nigel; Roe, John K-homology, assembly and rigidity theorems for relative eta invariants, Pure Appl. Math. Q., Volume 6 (2010) no. 2, pp. 555-601 | Article | MR 2761858 | Zbl 1227.19006

[50] Hunsicker, Eugenie; Mazzeo, Rafe Harmonic forms on manifolds with edges, Int. Math. Res. Not., Volume 2005 (2005) no. 52, pp. 3229-3272 | Article | MR 2186793 | Zbl 1089.58007

[51] Keswani, Navin Relative eta-invariants and C * -algebra K-theory, Topology, Volume 39 (2000) no. 5, pp. 597-983 | MR 1763959 | Zbl 0983.19002

[52] Keswani, Navin Von Neumann eta-invariants and C * -algebra K-theory, J. Lond. Math. Soc., Volume 62 (2000) no. 3, pp. 771-783 | Article | MR 1794283 | Zbl 1021.58018

[53] Lawson, H. Blaine; Michelsohn, Marie-Louise Spin geometry, Princeton Mathematical Series, 38, Princeton University Press, 1989 | MR 1031992 | Zbl 0688.57001

[54] Lesch, Matthias A singular elliptic estimate and applications, Pseudo-differential calculus and mathematical physics (Mathematical Topics), Volume 5, Akademie-Verlag, 1994, pp. 259-276 | MR 1287669 | Zbl 0822.58047

[55] Lesch, Matthias Operators of Fuchs type, conical singularities, and asymptotic methods, Teubner-Texte zur Mathematik, 136, B. G. Teubner, 1997 | MR 1449639 | Zbl 1156.58302

[56] Lesch, Matthias; Wojciechowski, Krzysztof P. On the η-invariant of generalized Atiyah–Patodi–Singer boundary value problems, Ill. J. Math., Volume 40 (1996) no. 1, pp. 30-46 | Article | MR 1386311 | Zbl 0866.58054

[57] Lück, Wolfgang; Schick, Thomas L 2 -torsion of hyperbolic manifolds of finite volume, Geom. Funct. Anal., Volume 9 (1999) no. 3, pp. 518-567 | MR 1708444 | Zbl 0947.58024

[58] Lück, Wolfgang; Schick, Thomas Various L 2 -signatures and a topological L 2 -signature theorem, High-dimensional manifold topology, World Scientific, 2003, pp. 362-399 | Article | Zbl 1044.58026

[59] Mazzeo, Rafe Elliptic theory of differential edge operators. I, Commun. Partial Differ. Equations, Volume 16 (1991) no. 10, pp. 1615-1664 | Article | MR 1133743 | Zbl 0745.58045

[60] Mazzeo, Rafe; Vertman, Boris Analytic torsion on manifolds with edges, Adv. Math., Volume 231 (2012) no. 2, pp. 1000-1040 | Article | MR 2955200 | Zbl 1255.58012

[61] Melrose, Richard B. Calculus of conormal distributions on manifolds with corners, Int. Math. Res. Not., Volume 1992 (1992) no. 3, pp. 51-61 | Article | MR 1154213 | Zbl 0754.58035

[62] Melrose, Richard B. The Atiyah–Patodi–Singer index theorem, Research Notes in Mathematics, 4, A. K. Peters, 1993 | MR 1348401 | Zbl 0796.58050

[63] Mooers, Edith A. Heat kernel asymptotics on manifolds with conic singularities, J. Anal. Math., Volume 78 (1999), pp. 1-36 | Article | MR 1714065 | Zbl 0981.58022

[64] Müller, Werner Eta invariants and manifolds with boundary, J. Differ. Geom., Volume 40 (1994) no. 2, pp. 311-377 | MR 1293657 | Zbl 0817.53025

[65] Müller, Werner; Vertman, Boris The Metric Anomaly of Analytic Torsion on Manifolds with Conical Singularities, Commun. Partial Differ. Equations, Volume 39 (2014) no. 1, pp. 146-191 | MR 3169782 | Zbl 1292.58024

[66] Piazza, Paolo; Schick, Thomas Bordism, rho-invariants and the Baum-Connes conjecture, J. Noncommut. Geom., Volume 1 (2007) no. 1, pp. 27-111 | Article | MR 2294190 | Zbl 1158.58012

[67] Piazza, Paolo; Schick, Thomas Groups with torsion, bordism and rho-invariants, Pac. J. Math., Volume 232 (2007) no. 2, pp. 355-378 | Article | MR 2366359 | Zbl 1152.58020

[68] Ramachandran, Mohan Von Neumann index theorems for manifolds with boundary, J. Differ. Geom., Volume 38 (1993) no. 2, pp. 315-349 | MR 1237487 | Zbl 0787.58040

[69] Roe, John Elliptic Operators, Topology, and Asymptotic Methods, CRC Research Notes in Mathematics, CRC Press, 1999

[70] Roy, Indrava Foliated rho-invariants (2010) (Ph. D. Thesis)

[71] Scott, Simon Traces and determinants of pseudodifferential operators, Oxford Mathematical Monographs, Oxford University Press, 2010 | MR 2683288 | Zbl 1216.35192

[72] Shubin, Mikhail A. Von Neumann algebras and L 2 techniques in Geometry and Topology (book in preparation)

[73] Vaillant, Boris Index theory for coverings (2008) (https://arxiv.org/abs/0806.4043)

[74] Vertman, Boris Heat-trace asymptotics for edge Laplacians with algebraic boundary conditions, J. Anal. Math., Volume 125 (2015) no. 1, pp. 285-318 | MR 3317904 | Zbl 1323.58019

[75] Zhang, Weiping An extended Cheeger–Müller theorem for covering spaces, Topology, Volume 44 (2005) no. 6, pp. 1093-1131 | Article | Zbl 1082.58030