We establish existence of eta-invariants as well as of the Atiyah–Patodi–Singer and the Cheeger–Gromov rho-invariants for a class of Dirac operators on an incomplete edge space. Our analysis applies in particular to the signature and the spin Dirac operator. We derive an analogue of the Atiyah–Patodi–Singer index theorem for incomplete edge spaces and their non-compact infinite Galois coverings with edge singular boundary. Our arguments are based on the microlocal analysis of the heat kernel asymptotics associated to the Dirac laplacian of an incomplete edge metric. As an application, we discuss stability results for the two rho-invariants we have defined.
Dans cet article, nous démontrons l’existence des invariants êta et des invariants rho de Atiyah–Patodi–Singer et Cheeger–Gromov pour une classe d’opérateurs de type Dirac sur des variétés stratifiées de profondeur 1 munies d’une métrique incomplète de type edge. Notre analyse s’applique, en particulier, à l’opérateur de signature et à l’opérateur de Dirac sur une variété spin. Nous établissons aussi des théorèmes de Atiyah–Patodi–Singer sur des variétés stratifiées de profondeur 1 avec bord et sur leurs revêtements de Galois. Nos arguments s’appuyent sur l’analyse microlocale du développement asymptotique du noyau de la chaleur pour un laplacien de Dirac associé à une métrique incomplète de type edge. Nous donnons des applications de cette analyse à l’étude des propriétés de stabilité des invariants rho que nous avons définit.
Revised:
Accepted:
Published online:
Keywords: stratified space, incomplete edge metrics, spin manifold, signature operator, spin Dirac operator, heat kernel asymptotic, eta invariant, rho invariant, Fredholm index
Mot clés : espace stratifiée, métrique incomplète de type edge, varieté spin, opérateur de signature, opérateur spin-Dirac, développement asymptotique du noyau de la chaleur, invariants êta, invariants rho, indice de Fredholm
@article{AIF_2019__69_5_1955_0, author = {Piazza, Paolo and Vertman, Boris}, title = {Eta and rho invariants on manifolds with edges}, journal = {Annales de l'Institut Fourier}, pages = {1955--2035}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {69}, number = {5}, year = {2019}, doi = {10.5802/aif.3287}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.3287/} }
TY - JOUR AU - Piazza, Paolo AU - Vertman, Boris TI - Eta and rho invariants on manifolds with edges JO - Annales de l'Institut Fourier PY - 2019 SP - 1955 EP - 2035 VL - 69 IS - 5 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.3287/ DO - 10.5802/aif.3287 LA - en ID - AIF_2019__69_5_1955_0 ER -
%0 Journal Article %A Piazza, Paolo %A Vertman, Boris %T Eta and rho invariants on manifolds with edges %J Annales de l'Institut Fourier %D 2019 %P 1955-2035 %V 69 %N 5 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.3287/ %R 10.5802/aif.3287 %G en %F AIF_2019__69_5_1955_0
Piazza, Paolo; Vertman, Boris. Eta and rho invariants on manifolds with edges. Annales de l'Institut Fourier, Volume 69 (2019) no. 5, pp. 1955-2035. doi : 10.5802/aif.3287. http://archive.numdam.org/articles/10.5802/aif.3287/
[1] A renormalized index theorem for some complete asymptotically regular metrics: The Gauss–Bonnet theorem, Adv. Math., Volume 213 (2007) no. 1, pp. 1-52 | DOI | MR | Zbl
[2] The index of Dirac operators on incomplete edge spaces, SIGMA, Symmetry Integrability Geom. Methods Appl., Volume 12 (2016), 089, 45 pages | MR | Zbl
[3] The index formula for families of Dirac type operators on pseudomanifolds (2017) (https://arxiv.org/abs/1312.4241)
[4] The signature package on Witt spaces, Ann. Sci. Éc. Norm. Supér., Volume 45 (2012), pp. 241-310 | DOI | MR | Zbl
[5] The Novikov conjecture on Cheeger spaces, J. Noncommut. Geom., Volume 11 (2017) no. 2, pp. 451-506 | DOI | MR | Zbl
[6] Hodge theory on Cheeger spaces, J. Reine Angew. Math., Volume 744 (2018), pp. 29-102 | MR | Zbl
[7] Families index for manifolds with hyperbolic cusp singularities, Int. Math. Res. Not., Volume 2009 (2009) no. 4, pp. 625-697 | MR | Zbl
[8] The Atiyah–Patodi–Singer index formula for measured foliations, Bull. Sci. Math., Volume 137 (2013) no. 2, pp. 140-176 | DOI | MR | Zbl
[9] The Atiyah–Patodi–Singer signature formula for measured foliations, J. Reine Angew. Math., Volume 695 (2014), pp. 217-242 | MR | Zbl
[10] Boundary integral for the Ramachandran index, Rend. Semin. Mat. Univ. Padova, Volume 131 (2014), pp. 1-14 | DOI | MR | Zbl
[11] Flat bundles, von Neumann algebras and K-theory with -coefficients, J. -Theory, Volume 13 (2014) no. 2, pp. 275-303 | DOI | MR | Zbl
[12] Bivariant K-theory with -coefficients and rho classes of unitary representations, J. Funct. Anal., Volume 270 (2016) no. 1, pp. 447-481 | DOI | MR | Zbl
[13] Elliptic operators, discrete groups and von Neumann algebras, Analysis and Topology (Orsay, 1974) (Astérisque), Volume 32–33, Société Mathématique de France, 1976, pp. 43-72 | Zbl
[14] Spectral asymmetry and Riemannian geometry. I, Math. Proc. Camb. Philos. Soc., Volume 77 (1975), pp. 43-69 | DOI | MR | Zbl
[15] Spectral asymmetry and Riemannian geometry. II, Math. Proc. Camb. Philos. Soc., Volume 78 (1975) no. 3, pp. 405-432 | DOI | MR | Zbl
[16] Spectral asymmetry and Riemannian geometry. III, Math. Proc. Camb. Philos. Soc., Volume 79 (1976) no. 1, pp. 71-99 | DOI | MR | Zbl
[17] Spectral flow, index and the signature operator, J. Topol. Anal., Volume 3 (2011) no. 1, p. 37-37 | DOI | MR | Zbl
[18] Poincare duality, Hilbert complexes and geometric applications, Adv. Math., Volume 267 (2014), pp. 121-175 | MR | Zbl
[19] The Higson-Roe exact sequence and eta invariants (2014) (https://arxiv.org/abs/1409.2717)
[20] Heat kernels and Dirac operators, Grundlehren Text Editions, Springer, 2004 | Zbl
[21] Families index for manifolds with boundary, superconnections and cones I and II, J. Funct. Anal., Volume 89 (1990) no. 2, pp. 313-363 | DOI | MR | Zbl
[22] Families index for manifolds with boundary, superconnections and cones. II: The Chern character, J. Funct. Anal., Volume 90 (1990) no. 2, pp. 306-354 | DOI | MR | Zbl
[23] The analysis of elliptic families II: Dirac operators, êta invariants, and the holonomy theorem, Commun. Math. Phys., Volume 107 (1986), pp. 103-163 | Zbl
[24] The eta invariant and metrics of positive scalar curvature, Math. Ann., Volume 302 (1995) no. 3, pp. 507-517 | MR | Zbl
[25] The eta invariant and the Gromov–Lawson conjecture for elementary Abelian groups of odd order, Topology Appl., Volume 80 (1997) no. 1-2, pp. 43-53 | DOI | MR | Zbl
[26] Residues of the eta function for an operator of Dirac type, J. Funct. Anal., Volume 108 (1992) no. 1, pp. 47-87 | MR | Zbl
[27] Theoreme de Rham pour les varietes stratifiees, Ann. Global Anal. Geom., Volume 9 (1991) no. 3, pp. 211-243 | DOI | MR | Zbl
[28] torsion without the determinant class condition and extended cohomology, Commun. Contemp. Math., Volume 7 (2005) no. 4, pp. 421-462 | DOI | MR | Zbl
[29] The signature operator on manifolds with a conical singular stratum, From probability to geometry II (Astérisque), Volume 328, Société Mathématique de France, 2009, pp. 1-44 | Zbl
[30] An index theorem for first order regular singular operators, Am. J. Math., Volume 110 (1988) no. 4, pp. 659-714 | DOI | MR | Zbl
[31] On the gluing problem for the eta-invariant, J. Differ. Geom., Volume 41 (1995) no. 2, pp. 397-448 | MR | Zbl
[32] -torsion invariants, J. Funct. Anal., Volume 110 (1992) no. 2, pp. 337-409 | MR | Zbl
[33] On Invariants of Hirzebruch and Cheeger–Gromov, Geom. Topol., Volume 7 (2003), pp. 311-319 | DOI | MR | Zbl
[34] Spectral geometry of singular Riemannian spaces, J. Differ. Geom., Volume 18 (1983) no. 4, pp. 575-657 | DOI | MR | Zbl
[35] -invariants, the adiabatic approximation and conical singularities. I. The adiabatic approximation, J. Differ. Geom., Volume 26 (1987) no. 1, pp. 175-221 | MR | Zbl
[36] Bounds on the von Neumann dimension of cohomology and the Gauss Bonnet theorem for open manifolds, J. Differ. Geom., Volume 21 (1985), pp. 1-34 | DOI | MR | Zbl
[37] The Dirac operator on spaces with conical singularities and positive scalar curvatures, Trans. Am. Math. Soc., Volume 289 (1985), pp. 1-40 | DOI | MR | Zbl
[38] The index of elliptic operators on manifolds with conical points, Sel. Math., New Ser., Volume 5 (1999) no. 4, pp. 467-506 | DOI | MR | Zbl
[39] The residue of the global function at the origin, Adv. Math., Volume 40 (1981) no. 3, pp. 290-307 | DOI | MR | Zbl
[40] Invariance theory, the heat equation, and the Atiyah-Singer index theorem, Mathematics Lecture Series, 11, Publish or Perish, 1984 | MR | Zbl
[41] The eta-invariant for even dimensional PIN manifolds, Adv. Math., Volume 58 (1985), pp. 243-284 | DOI | MR | Zbl
[42] The eta invariant of pin manifolds with cyclic fundamental groups, Period. Math. Hung., Volume 36 (1998) no. 2-3, pp. 139-170 | DOI | MR | Zbl
[43] The eta invariant for a class of elliptic boundary value problems, Commun. Pure Appl. Math., Volume 36 (1983) no. 1, pp. 85-131 | DOI | MR | Zbl
[44] Equivariant -invariants on homogeneous spaces, Math. Z., Volume 232 (1999) no. 1, pp. 1-42 | MR | Zbl
[45] Equivariant -invariants and -forms, J. Reine Angew. Math., Volume 526 (2000), pp. 181-236 | MR | Zbl
[46] Eta invariants of homogeneous spaces, Pure Appl. Math. Q., Volume 5 (2009) no. 3, pp. 915-946 | DOI | MR | Zbl
[47] Computations and applications of eta-invariants, Global differential geometry (Springer Proceedings in Mathematics), Volume 17, Springer, 2012, pp. 401-433 | DOI | MR | Zbl
[48] Basics of the -calculus, Approaches to singular analysis (Operator Theory: Advances and Applications), Volume 125, Birkhäuser, 2001, pp. 30-84 | DOI | MR | Zbl
[49] -homology, assembly and rigidity theorems for relative eta invariants, Pure Appl. Math. Q., Volume 6 (2010) no. 2, pp. 555-601 | DOI | MR | Zbl
[50] Harmonic forms on manifolds with edges, Int. Math. Res. Not., Volume 2005 (2005) no. 52, pp. 3229-3272 | DOI | MR | Zbl
[51] Relative eta-invariants and -algebra -theory, Topology, Volume 39 (2000) no. 5, pp. 597-983 | MR | Zbl
[52] Von Neumann eta-invariants and -algebra -theory, J. Lond. Math. Soc., Volume 62 (2000) no. 3, pp. 771-783 | DOI | MR | Zbl
[53] Spin geometry, Princeton Mathematical Series, 38, Princeton University Press, 1989 | MR | Zbl
[54] A singular elliptic estimate and applications, Pseudo-differential calculus and mathematical physics (Mathematical Topics), Volume 5, Akademie-Verlag, 1994, pp. 259-276 | MR | Zbl
[55] Operators of Fuchs type, conical singularities, and asymptotic methods, Teubner-Texte zur Mathematik, 136, B. G. Teubner, 1997 | MR | Zbl
[56] On the -invariant of generalized Atiyah–Patodi–Singer boundary value problems, Ill. J. Math., Volume 40 (1996) no. 1, pp. 30-46 | DOI | MR | Zbl
[57] -torsion of hyperbolic manifolds of finite volume, Geom. Funct. Anal., Volume 9 (1999) no. 3, pp. 518-567 | MR | Zbl
[58] Various -signatures and a topological -signature theorem, High-dimensional manifold topology, World Scientific, 2003, pp. 362-399 | DOI | Zbl
[59] Elliptic theory of differential edge operators. I, Commun. Partial Differ. Equations, Volume 16 (1991) no. 10, pp. 1615-1664 | DOI | MR | Zbl
[60] Analytic torsion on manifolds with edges, Adv. Math., Volume 231 (2012) no. 2, pp. 1000-1040 | DOI | MR | Zbl
[61] Calculus of conormal distributions on manifolds with corners, Int. Math. Res. Not., Volume 1992 (1992) no. 3, pp. 51-61 | DOI | MR | Zbl
[62] The Atiyah–Patodi–Singer index theorem, Research Notes in Mathematics, 4, A. K. Peters, 1993 | MR | Zbl
[63] Heat kernel asymptotics on manifolds with conic singularities, J. Anal. Math., Volume 78 (1999), pp. 1-36 | DOI | MR | Zbl
[64] Eta invariants and manifolds with boundary, J. Differ. Geom., Volume 40 (1994) no. 2, pp. 311-377 | MR | Zbl
[65] The Metric Anomaly of Analytic Torsion on Manifolds with Conical Singularities, Commun. Partial Differ. Equations, Volume 39 (2014) no. 1, pp. 146-191 | MR | Zbl
[66] Bordism, rho-invariants and the Baum-Connes conjecture, J. Noncommut. Geom., Volume 1 (2007) no. 1, pp. 27-111 | DOI | MR | Zbl
[67] Groups with torsion, bordism and rho-invariants, Pac. J. Math., Volume 232 (2007) no. 2, pp. 355-378 | DOI | MR | Zbl
[68] Von Neumann index theorems for manifolds with boundary, J. Differ. Geom., Volume 38 (1993) no. 2, pp. 315-349 | MR | Zbl
[69] Elliptic Operators, Topology, and Asymptotic Methods, CRC Research Notes in Mathematics, CRC Press, 1999
[70] Foliated rho-invariants, Université Paul Verlaine (France) (2010) (Ph. D. Thesis)
[71] Traces and determinants of pseudodifferential operators, Oxford Mathematical Monographs, Oxford University Press, 2010 | MR | Zbl
[72] Von Neumann algebras and techniques in Geometry and Topology (book in preparation)
[73] Index theory for coverings (2008) (https://arxiv.org/abs/0806.4043)
[74] Heat-trace asymptotics for edge Laplacians with algebraic boundary conditions, J. Anal. Math., Volume 125 (2015) no. 1, pp. 285-318 | MR | Zbl
[75] An extended Cheeger–Müller theorem for covering spaces, Topology, Volume 44 (2005) no. 6, pp. 1093-1131 | DOI | Zbl
Cited by Sources: