Holomorphic germs on Banach spaces
Annales de l'Institut Fourier, Volume 21 (1971) no. 3, pp. 107-141.

Let E and F be two complex Banach spaces, U a nonempty subset of E and K a compact subset of E. The concept of holomorphy type θ between E and F, and the natural locally convex topology 𝒯 ω,θ on the vector space θ (U,F) of all holomorphic mappings of a given holomorphy type θ from U to F were considered first by L. Nachbin. Motived by his work, we introduce the locally convex space θ (K,F) of all germs of holomorphic mappings into F around K of a given holomorphy type θ, and study its interplay with θ (U,F) and some other properties of the topology 𝒯 ω,θ .

Soient E et F des espaces de Banach complexes, U un ouvert non-vide de E et K un compact de E. La notion de type d’holomorphie θ de E dans F et la topologie localement convexe naturelle 𝒯 ω,θ sur l’espace vectoriel θ (U,F) de toutes les applications holomorphes de U dans F, d’un type d’holomorphie donné θ, ont été considérées d’abord par L. Nachbin. C’est le motif pour lequel nous introduisons l’espace localement convexe θ (K,F) de tous les germes d’applications holomorphes autour de K dans F, d’un type d’holomorphie donné θ, en étudiant ses rapports avec θ (U,F), et quelques unes des propriétés de la topologie 𝒯 ω,θ .

@article{AIF_1971__21_3_107_0,
     author = {Chae Soo Bong},
     title = {Holomorphic germs on {Banach} spaces},
     journal = {Annales de l'Institut Fourier},
     pages = {107--141},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {21},
     number = {3},
     year = {1971},
     doi = {10.5802/aif.381},
     mrnumber = {49 #9627},
     zbl = {0222.46018},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.381/}
}
TY  - JOUR
AU  - Chae Soo Bong
TI  - Holomorphic germs on Banach spaces
JO  - Annales de l'Institut Fourier
PY  - 1971
SP  - 107
EP  - 141
VL  - 21
IS  - 3
PB  - Institut Fourier
PP  - Grenoble
UR  - http://archive.numdam.org/articles/10.5802/aif.381/
DO  - 10.5802/aif.381
LA  - en
ID  - AIF_1971__21_3_107_0
ER  - 
%0 Journal Article
%A Chae Soo Bong
%T Holomorphic germs on Banach spaces
%J Annales de l'Institut Fourier
%D 1971
%P 107-141
%V 21
%N 3
%I Institut Fourier
%C Grenoble
%U http://archive.numdam.org/articles/10.5802/aif.381/
%R 10.5802/aif.381
%G en
%F AIF_1971__21_3_107_0
Chae Soo Bong. Holomorphic germs on Banach spaces. Annales de l'Institut Fourier, Volume 21 (1971) no. 3, pp. 107-141. doi : 10.5802/aif.381. http://archive.numdam.org/articles/10.5802/aif.381/

[A] H. Alexander, Analytic functions on a Banach space, Thesis, University of California at Berkeley (1968).

[Ch] S.B. Chae, Sur les espaces localement convexes de germes holomorphes, C.R. Ac. Paris, 271 (1970), 990-991. | MR | Zbl

[Ar] R.M. Aron, Topological properties of the space of holomorphic mappings, Thesis, University of Rochester (1970).

[B] J.A. Barroso, Topologia em espacos de aplicações holomorfas entre espaços localmente convexos, Thesis, Instituto de Matematica Pura e Aplicada, Rio de Janeiro (1970).

[C] G. Coeure, Fonctions plurisousharmoniques sur les espaces vectoriels topologiques et applications à l'étude des fonctions analytiques, Thèse, Université de Nancy (1969).

[D1] S. Dineen, Holomorphy type on a Banach space, Thesis, University of Maryland (1969).

[D2] S. Dineen, Holomorphic functions on a Banach space, Bulletin of American Mathematical Society (1970). | MR | Zbl

[D3] S. Dineen, The Cartan-Thullen theorem for Banach spaces, to appear Annali della Scuola Normale Superiore de Pisa. | Numdam | Zbl

[D4] S. Dineen, Bounding subsets of a Banach space (to appear). | Zbl

[DS] J. Dieudonne, L. Schwartz, La dualité dans les espaces (F) et (LF), Annales de l'Institut Fourier, Grenoble, t. 1 (1949), 61-101. | EuDML | Numdam | MR | Zbl

[GJ] L. Gillman, M. Jerison, Rings of continuous functions, Van Nostrand, Princeton (1960). | MR | Zbl

[Gr] A. Grothendieck, Sur les espaces (F) et (DF), Summa Brasiliensis Mathematicae, v. 3 (1954), 57-122. | MR | Zbl

[Gr2] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Memoirs of American Mathematical Society, n° 16 (1955). | MR | Zbl

[G] C.P. Gupta, Malgrange's theorem for nuclearly entire functions of bounded type on a Banach space, Thesis, University of Rochester (1966). Reproduced in Notas de Matematica, n° 37 (1968), Instituto de Matematica Pura e Aplicada, Rio de Janeiro. | MR | Zbl

[H] J. Horvath, Topological vector spaces and distributions, v. 1., Addison-Wesley, Mass. (1966). | MR | Zbl

[Hr] L. Hörmander, Introduction to complex analysis in several variables, Van Nostrand, Princeton (1966). | MR | Zbl

[L] P. Lelong, Fonctions et applications de type exponentiel dans les espaces vectoriels topologiques, C.R.A.c Paris 169 (1969). | MR

[M1] A. Martineau, Sur les fonctionnelles analytiques et la transformation de Fourier-Borel, Journal d'Analyse Mathématique, v. 11 (1963), 1-164. | MR | Zbl

[M2] A. Martineau, Sur la topologie des espaces de fonctions holomorphes, Mathematische Annalen, v. 163 (1966), 62-88. | EuDML | MR | Zbl

[Mt] M.C. Matos, Holomorphic mappings and domains of holomorphy, Thesis, University of Rochester (1970). | Zbl

[N1] L. Nachbin, Topological vector spaces of continuous functions, Proc. Nat. Acd. Sci. USA. v. 40 (1954), 471-4. | MR | Zbl

[N2] L. Nachbin, Lectures on topological vector spaces, Lecture note, University of Rochester (1963).

[N3] L. Nachbin, Lectures on the theory of distributions, University of Rochester (1963), Reproduced by Universidade do Recife (1964) ; North-Holland Publishing Company (1970). | Zbl

[N4] L. Nachbin, On the topology of the space of all holomorphic functions on a given open subset, Indagationes Mathematicae, Koninklijke Nederlandse Akademie van Wetenschappen, Proceedings, Series A 70 (1967), 366-368. | MR | Zbl

[N5] L. Nachbin, On spaces of holomorphic functions of a given type, Proceedings of the Conference on Functional Analysisis, University of California at Irvine (1966), 50-60. Thompson Book Company (1967). | Zbl

[N6] L. Nachbin, Topology on spaces of holomorphic mappings, Ergebnisse der Mathematik und ihrer Grenzgebiete, v. 47 (1969), Springer-Verlag, Berlin. | MR | Zbl

[N7] L. Nachbin, Convolution operators in spaces of nuclearly entire functions on a Banach space, Proceedings of the Symposium on Functional Analysis and Related Fields, University of Chicago (1969), Springer-Verlag, Berlin (in press). | Zbl

[N8] L. Nachbin, Holomorphic functions, domains of holomorphy and local properties, North-Holland Publishing Company (1970). | MR | Zbl

[N9] L. Nachbin, Concerning holomorphy types for Banach spaces, Studia Mathematica, Proceedings of the Colloquim on Nuclear Spaces and Ideals in Operator Algebras held in Warsaw, Poland, June 18-25, 1969.

[NG] L. Nachbin, C.P. Gupta, On Malgrange's theorem for nuclearly entire functions (to appear).

[Nr] P. Noverraz, Fonctions plurisousharmonique et analytiques dans les espaces vectoriels topologiques complexes, Annales de l'Institut Fourier, Grenoble, 19,2 (1969), 419-493. | EuDML | Numdam | MR | Zbl

[P] H.R. Pitt, A note on bilinear forms, Journal London Math. Society, v. 11 (1936), 174-180. | JFM | Zbl

[R] H.P. Rosenthal, On quasi-complemented subspaces of Banach spaces, with an appendix on compactness of operators from Lp (µ) to Lr (v), Journal of Functional Analysis 4 (1969), 176-214. | MR | Zbl

[T] F. Treves, Topological vector spaces, distributions and kernels, Academic Press, New York and London (1967). | MR | Zbl

[Z] M.A. Zorn, Characterization of analytic functions in Banach spaces, Annals of Mathematics, 12 (1945), 585-593. | MR | Zbl

Cited by Sources: