For , a characterization is given of the dual space of weak taken over a non atomic measure space.
Soit . Nous donnons une caractérisation de l’espace dual de -faible sur un espace mesuré non-atomique.
@article{AIF_1975__25_2_81_0, author = {Cwikel, Michael}, title = {The dual of weak $L^p$}, journal = {Annales de l'Institut Fourier}, pages = {81--126}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {25}, number = {2}, year = {1975}, doi = {10.5802/aif.556}, mrnumber = {53 #11355}, zbl = {0301.46025}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.556/} }
Cwikel, Michael. The dual of weak $L^p$. Annales de l'Institut Fourier, Volume 25 (1975) no. 2, pp. 81-126. doi : 10.5802/aif.556. http://archive.numdam.org/articles/10.5802/aif.556/
[1] A proof that every Banach space is subreflexive, Bull. Amer. Math. Soc., 67 (1961), 97-98.
and ,[2] On the conjugates of some function space, Studia Math., 45 (1973), 49-55. | MR | Zbl
,[3] Some results in the Lions-Peetre interpolation theory, Thesis, Weizmann Institute of Science, 1973. | MR | Zbl
,[4] L(p, ∞)*, Indiana Univ. Math. J., 21 (1972), 781-786.
and ,[5] Linear Operators, Part I : General Theory, Interscience, New York 1958. | MR | Zbl
and ,[6] On L(p,q) spaces, L'Enseignement Math., 12 (1966), 249-276. | MR | Zbl
,[7] Reflexivity and the sup of linear functionals, Israël J. Math., 13 (1972), 289-330. | MR | Zbl
,[8] Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165 (1972), 207-226. | MR | Zbl
,Cited by Sources: