We study one-dimensional oscillator integrals which arise as Fourier-Stieltjes transforms of smooth, compactly supported measures on smooth curves in Euclidean spaces and determine their decay at infinity, provided the curves satisfy certain geometric conditions.
Nous considérons des intégrales oscillatoires, de dimension un, qui sont transformées de Fourier-Stieltjes de mesures suffisamment régulières à support compact sur des courbes indéfiniment dérivables dans des espaces euclidiens. Nous déterminons leur comportement à l’infini pourvu qu’ils satisfassent certaines conditions géométriques.
@article{AIF_1983__33_4_189_0, author = {Muller, Detlef}, title = {Estimates of one-dimensional oscillatory integrals}, journal = {Annales de l'Institut Fourier}, pages = {189--201}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {33}, number = {4}, year = {1983}, doi = {10.5802/aif.945}, mrnumber = {86f:42003}, zbl = {0511.42013}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.945/} }
TY - JOUR AU - Muller, Detlef TI - Estimates of one-dimensional oscillatory integrals JO - Annales de l'Institut Fourier PY - 1983 SP - 189 EP - 201 VL - 33 IS - 4 PB - Institut Fourier PP - Grenoble UR - http://archive.numdam.org/articles/10.5802/aif.945/ DO - 10.5802/aif.945 LA - en ID - AIF_1983__33_4_189_0 ER -
Muller, Detlef. Estimates of one-dimensional oscillatory integrals. Annales de l'Institut Fourier, Volume 33 (1983) no. 4, pp. 189-201. doi : 10.5802/aif.945. http://archive.numdam.org/articles/10.5802/aif.945/
[1] Une inégalité, Ark. Mat. Astr. Fys., 25, B1 (1934). | JFM | Zbl
,[2] Singular Fourier integral operators and representations of nilpotent Lie groups, Comm. on Pure and Applied Math., B1 (1978), 681-705. | MR | Zbl
, ,[3] On the Banach algebra A(Γ) for smooth sets Γ ⊂Rn, Comment. Math. Helv., 52 (1977), 357-371. | MR | Zbl
,[4] Fourier transforms related to convex sets, Ann. of Math., (2), 75 (1962), 215-254. | MR | Zbl
,[5] Lower bounds at infinity for solutions of differential equations with constant coefficients, Israel J. Math., 16 (1973), 103-116. | MR | Zbl
,[6] Fourier transforms of surface-carried measures and differentiability of surface averages, Bull, Amer. Math. Soc., 69 (1963), 766-770. | MR | Zbl
,[7] On the spectral synthesis problem for hypersurfaces of Rn, J. Functional Analysis, 47 (1982), 247-280. | Zbl
,Cited by Sources: