We introduce a refinement of the classical Liouville function to primes in arithmetic progressions. Using this, we show that the occurrence of primes in the prime factorizations of integers depends on the arithmetic progressions to which the given primes belong. Supported by numerical tests, we are led to consider analogues of Pólya’s conjecture, and prove results related to the sign changes of the associated summatory functions.
Nous introduisons un raffinement de la fonction classique de Liouville pour les nombres premiers en progressions arithmétiques. En utilisant ces fonctions, nous montrons que l’apparition de nombres premiers dans la factorisation des entiers dépend de la progression arithmétique à laquelle ces nombres premiers appartiennent. Encouragés par des explorations numériques, nous sommes amenés à considérer des analogues de la conjecture de Pólya et à prouver des résultats liés aux changements de signe des fonctions de sommation associées.
Revised:
Accepted:
Published online:
Keywords: Liouville function, prime factorization, arithmetic progressions, Pólya’s conjecture
@article{JTNB_2019__31_1_1_0, author = {Humphries, Peter and Shekatkar, Snehal M. and Wong, Tian An}, title = {Biases in prime factorizations and {Liouville} functions for arithmetic progressions}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {1--25}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {31}, number = {1}, year = {2019}, doi = {10.5802/jtnb.1066}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.1066/} }
TY - JOUR AU - Humphries, Peter AU - Shekatkar, Snehal M. AU - Wong, Tian An TI - Biases in prime factorizations and Liouville functions for arithmetic progressions JO - Journal de théorie des nombres de Bordeaux PY - 2019 SP - 1 EP - 25 VL - 31 IS - 1 PB - Société Arithmétique de Bordeaux UR - http://archive.numdam.org/articles/10.5802/jtnb.1066/ DO - 10.5802/jtnb.1066 LA - en ID - JTNB_2019__31_1_1_0 ER -
%0 Journal Article %A Humphries, Peter %A Shekatkar, Snehal M. %A Wong, Tian An %T Biases in prime factorizations and Liouville functions for arithmetic progressions %J Journal de théorie des nombres de Bordeaux %D 2019 %P 1-25 %V 31 %N 1 %I Société Arithmétique de Bordeaux %U http://archive.numdam.org/articles/10.5802/jtnb.1066/ %R 10.5802/jtnb.1066 %G en %F JTNB_2019__31_1_1_0
Humphries, Peter; Shekatkar, Snehal M.; Wong, Tian An. Biases in prime factorizations and Liouville functions for arithmetic progressions. Journal de théorie des nombres de Bordeaux, Volume 31 (2019) no. 1, pp. 1-25. doi : 10.5802/jtnb.1066. http://archive.numdam.org/articles/10.5802/jtnb.1066/
[1] Limiting distributions of the classical error terms of prime number theory, Q. J. Math, Volume 65 (2014) no. 3, pp. 743-780 | DOI | MR
[2] Linear relations of zeroes of the zeta-function, Math. Comput., Volume 84 (2015) no. 294, pp. 2047-2058 | DOI | MR | Zbl
[3] Completely multiplicative functions taking values in , Trans. Am. Math. Soc., Volume 362 (2010) no. 12, pp. 6279-6291 | DOI | MR
[4] Sign changes in sums of the Liouville function, Math. Comput., Volume 77 (2008) no. 263, pp. 1681-1694 | DOI | MR
[5] A note on Pólya’s observation concerning Liouville’s function, Herman J. J. te Riele Liber Amicorum, CWI, 2010, pp. 92-97 (https://arxiv.org/abs/1112.4911)
[6] On the sums of multiplicative functions over numbers, all of whose divisors lie in a given arithmetic progression, Izv. Ross. Akad. Nauk, Ser. Mat., Volume 69 (2005) no. 2, pp. 205-220 | DOI | MR | Zbl
[7] The Gaussian law of errors in the theory of additive number theoretic functions, Am. J. Math., Volume 62 (1940), pp. 738-742 | DOI | MR | Zbl
[8] A disproof of a conjecture of Pólya, Mathematika, Volume 5 (1958), pp. 141-145 | DOI | MR | Zbl
[9] Random matrix theory and the derivative of the Riemann zeta-function, Proc. R. Soc. Lond., Ser. A, Volume 456 (2000) no. 2003, pp. 2611-2627 | DOI | MR | Zbl
[10] The distribution of weighted sums of the Liouville function and Pólya’s conjecture, J. Number Theory, Volume 133 (2013) no. 2, pp. 545-582 | DOI | MR
[11] On two conjectures in the theory of numbers, Am. J. Math., Volume 64 (1942), pp. 313-319 | DOI | MR | Zbl
[12] On a property of the set of prime numbers, Usp. Mat. Nauk, Volume 66 (2011) no. 2, pp. 3-14 | DOI | MR
[13] Über die Anzahl der Gitterpunkte in gewissen Bereichen. IV, Gött. Nachr., Volume 1924 (1924), pp. 137-150 | Zbl
[14] On the constant in the Mertens product for arithmetic progressions. II. Numerical values, Math. Comput., Volume 78 (2009) no. 265, pp. 315-326 | DOI | MR
[15] On the constant in the Mertens product for arithmetic progressions. I. Identities, Funct. Approximatio, Comment. Math., Volume 42 (2010) no. 1, pp. 17-27 | DOI | MR | Zbl
[16] Multiplicative functions in short intervals, Ann. Math., Volume 183 (2016) no. 3, pp. 1015-1056 | DOI | MR
[17] The distribution of -free numbers and the derivative of the Riemann zeta-function, Math. Proc. Camb. Philos. Soc., Volume 162 (2017) no. 2, pp. 293-317 | DOI | MR
[18] Large bias for integers with prime factors in arithmetic progressions, Mathematika, Volume 64 (2018) no. 1, pp. 237-252 | DOI | MR
[19] Multiplicative number theory. I. Classical theory, Cambridge Studies in Advanced Mathematics, 97, Cambridge University Press, 2007, xviii+552 pages | MR
[20] Verschiedene bemerkungen zur zahlentheorie., Deutsche Math.-Ver., Volume 28 (1919), pp. 31-40 | Zbl
Cited by Sources: