Automaticity of the sequence of the last nonzero digits of n! in a fixed base
Journal de Théorie des Nombres de Bordeaux, Tome 31 (2019) no. 1, pp. 283-291.

En 2011, Deshouillers et Ruzsa [5] ont donné des arguments en faveur de la non-automaticité de la suite des derniers chiffres non nuls de n! en base 12. Cette assertion a été prouvée quelques années plus tard par Deshoulliers [4]. Dans cet article, nous donnons une preuve alternative qui nous permet de généraliser le problème et donner une caractérisation complète des bases pour lesquelles la suite des derniers chiffres non nuls de n! est automatique.

In 2011 Deshouillers and Ruzsa [5] tried to argue that the sequence of the last nonzero digit of n! in base 12 is not automatic. This statement was proven a few years later by Deshoulliers in [4]. In this paper we provide an alternate proof that lets us generalize the problem and give an exact characterization of the bases for which the sequence of the last nonzero digits of n! is automatic.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/jtnb.1080
Classification : 11B85,  11A63,  68Q45,  68R15
Mots clés : automatic sequence, factorial, the last nonzero digit
@article{JTNB_2019__31_1_283_0,
     author = {Lipka, Eryk},
     title = {Automaticity of the sequence of the last nonzero digits of $n!$ in a fixed base},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {283--291},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {31},
     number = {1},
     year = {2019},
     doi = {10.5802/jtnb.1080},
     mrnumber = {3994731},
     zbl = {07246525},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/jtnb.1080/}
}
TY  - JOUR
AU  - Lipka, Eryk
TI  - Automaticity of the sequence of the last nonzero digits of $n!$ in a fixed base
JO  - Journal de Théorie des Nombres de Bordeaux
PY  - 2019
DA  - 2019///
SP  - 283
EP  - 291
VL  - 31
IS  - 1
PB  - Société Arithmétique de Bordeaux
UR  - http://archive.numdam.org/articles/10.5802/jtnb.1080/
UR  - https://www.ams.org/mathscinet-getitem?mr=3994731
UR  - https://zbmath.org/?q=an%3A07246525
UR  - https://doi.org/10.5802/jtnb.1080
DO  - 10.5802/jtnb.1080
LA  - en
ID  - JTNB_2019__31_1_283_0
ER  - 
Lipka, Eryk. Automaticity of the sequence of the last nonzero digits of $n!$ in a fixed base. Journal de Théorie des Nombres de Bordeaux, Tome 31 (2019) no. 1, pp. 283-291. doi : 10.5802/jtnb.1080. http://archive.numdam.org/articles/10.5802/jtnb.1080/

[1] Allouche, Jean-Paul; Shallit, Jeffrey Automatic Sequences. Theory, Applications, Generalizations, Cambridge University Press, 2003 | Zbl 1086.11015

[2] Byszewski, Jakub; Konieczny, Jakub A density version of Cobham’s theorem (2017) (https://arxiv.org/abs/1710.07261) | Zbl 07178785

[3] Deshouillers, Jean-Marc A footnote to The least non zero digit of n! in base 12, Unif. Distrib. Theory, Volume 7 (2012) no. 1, pp. 71-73 | Zbl 1313.11024

[4] Deshouillers, Jean-Marc Yet another footnote to The least non zero digit of n! in base 12, Unif. Distrib. Theory, Volume 11 (2016) no. 2, pp. 163-167 | Article | Zbl 06846994

[5] Deshouillers, Jean-Marc; Ruzsa, Imre The least non zero digit of n! in base 12, Publ. Math., Volume 79 (2011) no. 3-4, pp. 395-400 | Zbl 1249.11044

[6] Legendre, Adrien-Marie Théorie des nombres, Firmin Didot frères, 1830 | Zbl 1395.11005

[7] Stewart, Cameron L. On the representation of an integer in two different bases, J. Reine Angew. Math., Volume 319 (1980), pp. 63-72 | MR 586115 | Zbl 0426.10008

Cité par Sources :