Partial sums of the cotangent function
Journal de théorie des nombres de Bordeaux, Volume 32 (2020) no. 1, pp. 217-230.

We prove the existence of reciprocity formulae for sums of the form m=1 k-1 f(m k)cot(πmh k) where f is a piecewise C 1 function, featuring an alternating phenomenon not visible in the classical case where f(x)=x. We deduce bounds for these sums in terms of the continued fraction expansion of h/k.

Nous prouvons l’existence de formules de réciprocité pour des sommes de la forme m=1 k-1 f(m k)cot(πmh k), où f est une fonction C 1 par morceaux, qui met en évidence un phénomène d’alternance qui n’apparaît pas dans le cas classique où f(x)=x. Nous déduisons des majorations de ces sommes en termes du développement en fraction continue de h/k.

Received:
Accepted:
Published online:
DOI: 10.5802/jtnb.1119
Classification: 11L03, 11A55, 11M35
Keywords: Cotangent sum, continued fraction
Bettin, Sandro 1; Drappeau, Sary 2

1 DIMA - Dipartimento di Matematica Via Dodecaneso, 35 16146 Genova, Italy
2 Aix Marseille Université, CNRS Centrale Marseille, I2M UMR 7373 13453 Marseille, France
@article{JTNB_2020__32_1_217_0,
     author = {Bettin, Sandro and Drappeau, Sary},
     title = {Partial sums of the cotangent function},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {217--230},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {32},
     number = {1},
     year = {2020},
     doi = {10.5802/jtnb.1119},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/jtnb.1119/}
}
TY  - JOUR
AU  - Bettin, Sandro
AU  - Drappeau, Sary
TI  - Partial sums of the cotangent function
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2020
SP  - 217
EP  - 230
VL  - 32
IS  - 1
PB  - Société Arithmétique de Bordeaux
UR  - http://archive.numdam.org/articles/10.5802/jtnb.1119/
DO  - 10.5802/jtnb.1119
LA  - en
ID  - JTNB_2020__32_1_217_0
ER  - 
%0 Journal Article
%A Bettin, Sandro
%A Drappeau, Sary
%T Partial sums of the cotangent function
%J Journal de théorie des nombres de Bordeaux
%D 2020
%P 217-230
%V 32
%N 1
%I Société Arithmétique de Bordeaux
%U http://archive.numdam.org/articles/10.5802/jtnb.1119/
%R 10.5802/jtnb.1119
%G en
%F JTNB_2020__32_1_217_0
Bettin, Sandro; Drappeau, Sary. Partial sums of the cotangent function. Journal de théorie des nombres de Bordeaux, Volume 32 (2020) no. 1, pp. 217-230. doi : 10.5802/jtnb.1119. http://archive.numdam.org/articles/10.5802/jtnb.1119/

[1] Apostol, Tom M. Introduction to analytic number theory, Undergraduate Texts in Mathematics, Springer, 1976 | Zbl

[2] Báez-Duarte, Luis A strengthening of the Nyman–Beurling criterion for the Riemann hypothesis, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl., Volume 14 (2003) no. 1, pp. 5-11 | MR | Zbl

[3] Bagchi, Bhaskar On Nyman, Beurling and Baez–Duarte’s Hilbert space reformulation of the Riemann hypothesis, Proc. Indian Acad. Sci., Math. Sci., Volume 116 (2006) no. 2, pp. 137-146 | DOI | MR | Zbl

[4] Beck, Matthias Dedekind cotangent sums, Acta Arith., Volume 109 (2003) no. 2, pp. 109-130 | DOI | MR | Zbl

[5] Berndt, Bruce C. Dedekind sums and a paper of G. H. Hardy, J. Lond. Math. Soc., Volume 13 (1976) no. 1, pp. 129-137 | DOI | MR | Zbl

[6] Bettin, Sandro On the distribution of a cotangent sum, Int. Math. Res. Not., Volume 2015 (2015) no. 21, pp. 11419-11432 | DOI | MR | Zbl

[7] Bettin, Sandro; Conrey, Brian Period functions and cotangent sums, Algebra Number Theory, Volume 7 (2013) no. 1, pp. 215-242 | DOI | MR | Zbl

[8] Bettin, Sandro; Conrey, John Brian A reciprocity formula for a cotangent sum, Int. Math. Res. Not., Volume 2013 (2013) no. 24, pp. 5709-5726 | DOI | MR | Zbl

[9] Bettin, Sandro; Drappeau, Sary Modularity and value distribution of quantum invariants of hyperbolic knots (2020) (https://arxiv.org/abs/1905.02045v3)

[10] Gradshteyn, I. S.; Ryzhik, I. M. Table of integrals, series, and products, Elsevier; Academic Press Inc., 2007 | Zbl

[11] Heilbronn, Hans On the average length of a class of finite continued fractions, Number Theory and Analysis (Papers in Honor of Edmund Landau), Plenum Press, 1969, pp. 87-96 | MR | Zbl

[12] Hickerson, Dean Continued fractions and density results for Dedekind sums, J. Reine Angew. Math., Volume 290 (1977), pp. 113-116 | MR | Zbl

[13] Khinchin, Aleksandr Y. Continued fractions, P. Noordhoff, 1963 (translated by Peter Wynn) | Zbl

[14] Maier, Helmut; Rassias, Michael T. Generalizations of a cotangent sum associated to the Estermann zeta function, Commun. Contemp. Math., Volume 18 (2016) no. 1, 1550078, 89 pages | MR | Zbl

[15] Titchmarsh, Edward C. The theory of functions, Oxford University Press, 1939 | Zbl

[16] Vasyunin, Vasiliĭ I. On a biorthogonal system associated with the Riemann hypothesis, Algebra Anal., Volume 7 (1995) no. 3, pp. 118-135 | MR | Zbl

[17] Zagier, Don Higher dimensional Dedekind sums, Math. Ann., Volume 202 (1973), pp. 149-172 | DOI | MR | Zbl

Cited by Sources: