We prove the existence of reciprocity formulae for sums of the form where is a piecewise function, featuring an alternating phenomenon not visible in the classical case where . We deduce bounds for these sums in terms of the continued fraction expansion of .
Nous prouvons l’existence de formules de réciprocité pour des sommes de la forme , où est une fonction par morceaux, qui met en évidence un phénomène d’alternance qui n’apparaît pas dans le cas classique où . Nous déduisons des majorations de ces sommes en termes du développement en fraction continue de .
Accepted:
Published online:
Keywords: Cotangent sum, continued fraction
@article{JTNB_2020__32_1_217_0, author = {Bettin, Sandro and Drappeau, Sary}, title = {Partial sums of the cotangent function}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {217--230}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {32}, number = {1}, year = {2020}, doi = {10.5802/jtnb.1119}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.1119/} }
TY - JOUR AU - Bettin, Sandro AU - Drappeau, Sary TI - Partial sums of the cotangent function JO - Journal de théorie des nombres de Bordeaux PY - 2020 SP - 217 EP - 230 VL - 32 IS - 1 PB - Société Arithmétique de Bordeaux UR - http://archive.numdam.org/articles/10.5802/jtnb.1119/ DO - 10.5802/jtnb.1119 LA - en ID - JTNB_2020__32_1_217_0 ER -
%0 Journal Article %A Bettin, Sandro %A Drappeau, Sary %T Partial sums of the cotangent function %J Journal de théorie des nombres de Bordeaux %D 2020 %P 217-230 %V 32 %N 1 %I Société Arithmétique de Bordeaux %U http://archive.numdam.org/articles/10.5802/jtnb.1119/ %R 10.5802/jtnb.1119 %G en %F JTNB_2020__32_1_217_0
Bettin, Sandro; Drappeau, Sary. Partial sums of the cotangent function. Journal de théorie des nombres de Bordeaux, Volume 32 (2020) no. 1, pp. 217-230. doi : 10.5802/jtnb.1119. http://archive.numdam.org/articles/10.5802/jtnb.1119/
[1] Introduction to analytic number theory, Undergraduate Texts in Mathematics, Springer, 1976 | Zbl
[2] A strengthening of the Nyman–Beurling criterion for the Riemann hypothesis, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl., Volume 14 (2003) no. 1, pp. 5-11 | MR | Zbl
[3] On Nyman, Beurling and Baez–Duarte’s Hilbert space reformulation of the Riemann hypothesis, Proc. Indian Acad. Sci., Math. Sci., Volume 116 (2006) no. 2, pp. 137-146 | DOI | MR | Zbl
[4] Dedekind cotangent sums, Acta Arith., Volume 109 (2003) no. 2, pp. 109-130 | DOI | MR | Zbl
[5] Dedekind sums and a paper of G. H. Hardy, J. Lond. Math. Soc., Volume 13 (1976) no. 1, pp. 129-137 | DOI | MR | Zbl
[6] On the distribution of a cotangent sum, Int. Math. Res. Not., Volume 2015 (2015) no. 21, pp. 11419-11432 | DOI | MR | Zbl
[7] Period functions and cotangent sums, Algebra Number Theory, Volume 7 (2013) no. 1, pp. 215-242 | DOI | MR | Zbl
[8] A reciprocity formula for a cotangent sum, Int. Math. Res. Not., Volume 2013 (2013) no. 24, pp. 5709-5726 | DOI | MR | Zbl
[9] Modularity and value distribution of quantum invariants of hyperbolic knots (2020) (https://arxiv.org/abs/1905.02045v3)
[10] Table of integrals, series, and products, Elsevier; Academic Press Inc., 2007 | Zbl
[11] On the average length of a class of finite continued fractions, Number Theory and Analysis (Papers in Honor of Edmund Landau), Plenum Press, 1969, pp. 87-96 | MR | Zbl
[12] Continued fractions and density results for Dedekind sums, J. Reine Angew. Math., Volume 290 (1977), pp. 113-116 | MR | Zbl
[13] Continued fractions, P. Noordhoff, 1963 (translated by Peter Wynn) | Zbl
[14] Generalizations of a cotangent sum associated to the Estermann zeta function, Commun. Contemp. Math., Volume 18 (2016) no. 1, 1550078, 89 pages | MR | Zbl
[15] The theory of functions, Oxford University Press, 1939 | Zbl
[16] On a biorthogonal system associated with the Riemann hypothesis, Algebra Anal., Volume 7 (1995) no. 3, pp. 118-135 | MR | Zbl
[17] Higher dimensional Dedekind sums, Math. Ann., Volume 202 (1973), pp. 149-172 | DOI | MR | Zbl
Cited by Sources: