We formulate analogues of the Birch and Swinnerton-Dyer conjecture for the -adic -functions of Bertolini, Darmon, and Prasanna attached to elliptic curves at primes of good ordinary reduction. Using Iwasawa theory, we then prove, under mild hypotheses, one of the inequalities predicted by the “rank part” of our conjectures, as well as the predicted leading coefficient formula, up to a -adic unit.
Our conjectures are very closely related to conjectures of Birch and Swinnerton-Dyer type formulated by Bertolini and Darmon in 1996 for Heegner distributions, and as application of our results we also obtain the proof of an inequality in the rank part of their conjectures.
Nous formulons des analogues de la conjecture de Birch et Swinnerton-Dyer pour les fonctions -adiques de Bertolini, Darmon et Prasanna attachées aux courbes elliptiques en leurs places de bonne réduction ordinaire. En utilisant la théorie d’Iwasawa, nous prouvons ensuite, sous des hypothèses faibles, l’une des inégalités prédites par la partie rang de nos conjectures, ainsi que la formule prédite pour la valeur du premier terme non nul dans le développement limité, à une unité -adique près.
Nos conjectures sont très étroitement liées aux conjectures du type Birch et Swinnerton-Dyer formulées par Bertolini et Darmon en 1996 pour les distributions de Heegner, et comme application de nos résultats, nous obtenons également la preuve d’une inégalité dans la partie rang de leurs conjectures.
Accepted:
Published online:
Keywords: Elliptic curves, Birch and Swinnerton-Dyer conjecture, Heegner points, $p$-adic $L$-functions
@article{JTNB_2021__33_3.1_629_0, author = {Agboola, Adebisi and Castella, Francesc}, title = {On anticyclotomic variants of the $p$-adic {Birch} and {Swinnerton-Dyer} conjecture}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {629--658}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {33}, number = {3.1}, year = {2021}, doi = {10.5802/jtnb.1174}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.1174/} }
TY - JOUR AU - Agboola, Adebisi AU - Castella, Francesc TI - On anticyclotomic variants of the $p$-adic Birch and Swinnerton-Dyer conjecture JO - Journal de théorie des nombres de Bordeaux PY - 2021 SP - 629 EP - 658 VL - 33 IS - 3.1 PB - Société Arithmétique de Bordeaux UR - http://archive.numdam.org/articles/10.5802/jtnb.1174/ DO - 10.5802/jtnb.1174 LA - en ID - JTNB_2021__33_3.1_629_0 ER -
%0 Journal Article %A Agboola, Adebisi %A Castella, Francesc %T On anticyclotomic variants of the $p$-adic Birch and Swinnerton-Dyer conjecture %J Journal de théorie des nombres de Bordeaux %D 2021 %P 629-658 %V 33 %N 3.1 %I Société Arithmétique de Bordeaux %U http://archive.numdam.org/articles/10.5802/jtnb.1174/ %R 10.5802/jtnb.1174 %G en %F JTNB_2021__33_3.1_629_0
Agboola, Adebisi; Castella, Francesc. On anticyclotomic variants of the $p$-adic Birch and Swinnerton-Dyer conjecture. Journal de théorie des nombres de Bordeaux, Volume 33 (2021) no. 3.1, pp. 629-658. doi : 10.5802/jtnb.1174. http://archive.numdam.org/articles/10.5802/jtnb.1174/
[1] On Rubin’s variant of the -adic Birch and Swinnerton-Dyer conjecture, Compos. Math., Volume 143 (2007) no. 6, pp. 1374-1398 | DOI | MR | Zbl
[2] Derived heights and generalized Mazur–Tate regulators, Duke Math. J., Volume 76 (1994) no. 1, pp. 75-111 | DOI | MR | Zbl
[3] Derived -adic heights, Am. J. Math., Volume 117 (1995) no. 6, pp. 1517-1554 | DOI | MR | Zbl
[4] Heegner points on Mumford–Tate curves, Invent. Math., Volume 126 (1996) no. 3, pp. 413-456 | DOI | MR | Zbl
[5] Iwasawa’s main conjecture for elliptic curves over anticyclotomic -extensions, Ann. Math., Volume 162 (2005) no. 1, pp. 1-64 | DOI | MR
[6] -adic Rankin -series and rational points on CM elliptic curves, Pacific J. of Math. (2012), pp. 261-303 | DOI | MR | Zbl
[7] Generalized Heegner cycles and -adic Rankin -series, Duke Math. J., Volume 162 (2013) no. 6, pp. 1033-1148 | DOI | MR | Zbl
[8] Anticyclotomic -adic -function of central critical Rankin-Selberg -value, Int. Math. Res. Not., Volume 2011 (2011) no. 21, pp. 4967-5018 | MR | Zbl
[9] On the modularity of elliptic curves over : wild 3-adic exercises, J. Am. Math. Soc., Volume 14 (2001) no. 4, pp. 843-939 | DOI | MR | Zbl
[10] A proof of Perrin-Riou’s Heegner point main conjecture, Algebra Number Theory, Volume 15 (2021) no. 7, pp. 1627-1653 | DOI | MR | Zbl
[11] -adic heights of Heegner points and Beilinson-Flach classes, J. Lond. Math. Soc., Volume 96 (2017) no. 1, pp. 156-180 | DOI | MR | Zbl
[12] On the -adic variation of Heegner points, J. Inst. Math. Jussieu, Volume 19 (2020) no. 6, pp. 2127-2164 | DOI | MR | Zbl
[13] Heegner cycles and p-adic -functions, Math. Ann., Volume 370 (2018) no. 1-2, pp. 567-628 | DOI | MR | Zbl
[14] Mazur’s conjecture on higher Heegner points, Invent. Math., Volume 148 (2002) no. 3, pp. 495-523 | DOI | MR | Zbl
[15] Nontriviality of Rankin–Selberg -functions and CM points, -functions and Galois representations (London Mathematical Society Lecture Note Series), Volume 320, Cambridge University Press, 2007, pp. 121-186 | DOI | MR | Zbl
[16] A refined conjecture of Mazur–Tate type for Heegner points, Invent. Math., Volume 110 (1992) no. 1, pp. 123-146 | DOI | MR | Zbl
[17] Iwasawa theory and -adic deformations of motives, Motives (Seattle, WA, 1991) (Proceedings of Symposia in Pure Mathematics), Volume 55, American Mathematical Society, 1994, pp. 193-223 | MR | Zbl
[18] Kolyvagin’s work on modular elliptic curves, -functions and arithmetic (Durham, 1989) (London Mathematical Society Lecture Note Series), Volume 153, Cambridge University Press, 1991, pp. 235-256 | DOI | MR | Zbl
[19] Iwasawa theory of Heegner points on abelian varieties of type, Duke Math. J., Volume 124 (2004) no. 1, pp. 1-45 | DOI | Zbl
[20] Bipartite Euler systems, J. Reine Angew. Math., Volume 597 (2006), pp. 1-25 | DOI | MR | Zbl
[21] The Birch and Swinnerton-Dyer formula for elliptic curves of analytic rank one, Camb. J. Math., Volume 5 (2017) no. 3, pp. 369-434 | DOI | MR | Zbl
[22] Rational points of abelian varieties with values in towers of number fields, Invent. Math., Volume 18 (1972), pp. 183-266 | DOI | MR | Zbl
[23] Modular curves and arithmetic, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983), PWN-Polish Scientific Publishers (1984), pp. 185-211 | Zbl
[24] Studying the growth of Mordell–Weil, Doc. Math., Volume Extra Vol. (2003), pp. 585-607 (Kazuya Kato’s fiftieth birthday) | MR | Zbl
[25] Canonical height pairings via biextensions, Arithmetic and geometry, Vol. I (Progress in Mathematics), Volume 35, Birkhäuser, 1983, pp. 195-237 | DOI | MR | Zbl
[26] On the parity of ranks of Selmer groups. II, C. R. Math. Acad. Sci. Paris, Volume 332 (2001) no. 2, pp. 99-104 | DOI | MR | Zbl
[27] A converse to a theorem of Gross, Zagier, and Kolyvagin, Ann. Math., Volume 191 (2020) no. 2, pp. 329-354 | DOI | MR | Zbl
[28] Selmer groups and the indivisibility of Heegner points, Camb. J. Math., Volume 2 (2014) no. 2, pp. 191-253 | DOI | MR | Zbl
Cited by Sources: