The study of overconvergent cohomology, initiated by Pollack and Stevens in the setting of classical modular forms, has now been used to construct -adic -functions in a number of settings. The method is conceptual and is very closely related to the recent constructions of eigenvarieties by Ash–Stevens, Urban and Hansen. In this note, we give an exposition of the ideas behind the use of overconvergent cohomology in constructing -adic -functions, and use it to construct -adic -functions attached to base-change families of automorphic representations for over CM fields. As a corollary, we prove a -adic Artin formalism result for base-change -adic -functions.
L’étude de la cohomologie surconvergente, initiée par Pollack et Stevens dans le cadre des formes modulaires classiques, a été utilisée pour construire des fonctions -adiques dans un certain nombre de contextes. La méthode est conceptuelle et très étroitement liée aux constructions récentes des variétés de Hecke par Ash–Stevens, Urban et Hansen. Dans cette note, nous exposons des idées qui sont derrière l’utilisation de la cohomologie surconvergente dans la construction de fonctions L -adiques, et nous les utilisons pour construire des fonctions -adiques attachées aux familles de représentations automorphes de sur un corps de type CM provenant par changement de base. Comme corollaire, nous établissons une version du formalisme d’Artin -adique pour ces fonctions -adiques.
Revised:
Accepted:
Published online:
Keywords: Overconvergent cohomology, $p$-adic $L$-functions, automorphic representations
@article{JTNB_2021__33_3.1_659_0, author = {Barrera Salazar, Daniel and Williams, Chris}, title = {Overconvergent cohomology, $p$-adic $L$-functions and families for $\protect \mathrm{GL}(2)$ over {CM} fields}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {659--701}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {33}, number = {3.1}, year = {2021}, doi = {10.5802/jtnb.1175}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.1175/} }
TY - JOUR AU - Barrera Salazar, Daniel AU - Williams, Chris TI - Overconvergent cohomology, $p$-adic $L$-functions and families for $\protect \mathrm{GL}(2)$ over CM fields JO - Journal de théorie des nombres de Bordeaux PY - 2021 SP - 659 EP - 701 VL - 33 IS - 3.1 PB - Société Arithmétique de Bordeaux UR - http://archive.numdam.org/articles/10.5802/jtnb.1175/ DO - 10.5802/jtnb.1175 LA - en ID - JTNB_2021__33_3.1_659_0 ER -
%0 Journal Article %A Barrera Salazar, Daniel %A Williams, Chris %T Overconvergent cohomology, $p$-adic $L$-functions and families for $\protect \mathrm{GL}(2)$ over CM fields %J Journal de théorie des nombres de Bordeaux %D 2021 %P 659-701 %V 33 %N 3.1 %I Société Arithmétique de Bordeaux %U http://archive.numdam.org/articles/10.5802/jtnb.1175/ %R 10.5802/jtnb.1175 %G en %F JTNB_2021__33_3.1_659_0
Barrera Salazar, Daniel; Williams, Chris. Overconvergent cohomology, $p$-adic $L$-functions and families for $\protect \mathrm{GL}(2)$ over CM fields. Journal de théorie des nombres de Bordeaux, Volume 33 (2021) no. 3.1, pp. 659-701. doi : 10.5802/jtnb.1175. http://archive.numdam.org/articles/10.5802/jtnb.1175/
[1] Distributions -adiques associées aux séries de Hecke, Journées arithmétiques de Bordeaux (Bordeaux, 1974) (Astérisque), Volume 24-25, Société Mathématique de France, 1974, pp. 119-131 | Zbl
[2] Overconvergent Eichler–Shimura isomorphisms, J. Inst. Math. Jussieu, Volume 14 (2015) no. 2, pp. 221-274 | DOI | MR | Zbl
[3] Rigidity of -adic cohomology classes of congruence subgroups of , Proc. Lond. Math. Soc., Volume 96 (2008) no. 2, pp. 367-388 | MR | Zbl
[4] -adic deformations of arithmetic cohomology (2008) (preprint)
[5] Overconvergent cohomology of Hilbert modular varieties and -adic -functions, Ann. Inst. Fourier, Volume 68 (2018) no. 5, pp. 2177-2213 | DOI | Numdam | MR | Zbl
[6] -adic -functions of Hilbert cusp forms and the trivial zero conjecture (2017) (https://arxiv.org/abs/1709.08105, to appear in J. Eur. Math. Soc.)
[7] On -adic -functions for in finite slope Shalika families (2021) (https://arxiv.org/abs/2103.10907)
[8] -adic -functions for , Can. J. Math., Volume 71 (2019) no. 5, pp. 1019-1059 | DOI | MR | Zbl
[9] Families of Bianchi modular symbols: critical base-change -adic -functions and -adic Artin formalism, Sel. Math., New Ser., Volume 27 (2021) no. 5, 85, 45 pages | MR | Zbl
[10] Critical -adic -functions, Invent. Math., Volume 189 (2012) no. 1, pp. 1-60 | DOI | MR | Zbl
[11] On -adic -functions for Hilbert modular forms (2017) (https://arxiv.org/abs/1710.05324, to appear in Mem. Am. Math. Soc.)
[12] The rationality of Stark–Heegner points over genus fields of real quadratic fields, Ann. Math., Volume 170 (2009) no. 1, pp. 343-370 | DOI | MR | Zbl
[13] Stable real cohomology of arithmetic groups, Ann. Sci. Éc. Norm. Supér., Volume 7 (1974), pp. 235-272 | DOI | Numdam | MR | Zbl
[14] Stable real cohomology of arithmetic groups II, Manifolds and Lie groups (Progress in Mathematics), Volume 14, Birkhäuser, 1981, pp. 21-55 | DOI | MR | Zbl
[15] Non-Archimedean analysis. A systematic approach to rigid analytic geometry, Grundlehren der Mathematischen Wissenschaften, 261, Springer, 1984
[16] Eigenvarieties, -functions and Galois representations (London Mathematical Society Lecture Note Series), Volume 320, Cambridge University Press, 2007, pp. 59-120 | DOI | MR | Zbl
[17] Nearly ordinary Galois deformations over arbitrary number fields, J. Inst. Math. Jussieu, Volume 8 (2009) no. 1, pp. 99-177 | DOI | MR | Zbl
[18] Motifs et formes automorphes: applications du principe de fonctorialité, Automorphic forms, Shimura varieties, and -functions, Vol. I (Ann Arbor, 1988) (Perspectives in Mathematics), Volume 10, Academic Press Inc., 1988, pp. 77-159 | Zbl
[19] Valeurs de fonctions et périodes d’intégrales, Automorphic forms, representations and -functions (Proceedings of Symposia in Pure Mathematics), Volume 33, American Mathematical Society, 1979, pp. 313-346 | DOI | Zbl
[20] Automorphic symbols, -adic -functions and ordinary cohomology of Hilbert modular varieties, Am. J. Math., Volume 135 (2013) no. 4, pp. 1117-1155 | DOI | MR | Zbl
[21] Triple product -adic -functions for balanced weights, Math. Ann., Volume 376 (2020) no. 1-2, pp. 103-176 | DOI | MR | Zbl
[22] -adic -functions and -adic periods of modular forms, Invent. Math., Volume 111 (1993) no. 2, pp. 407-447 | DOI | MR | Zbl
[23] On the arithmetic of Shalika models and the critical values of -functions for , Am. J. Math., Volume 136 (2014) no. 3, pp. 675-728 (with an appendix by Wee Teck Gan) | DOI | MR | Zbl
[24] Universal eigenvarieties, trianguline Galois representations and -adic Langlands functoriality, J. Reine Angew. Math., Volume 730 (2017), pp. 1-64 | DOI | MR | Zbl
[25] On the GL-eigenvariety and a conjecture of Venkatesh, Sel. Math., New Ser., Volume 23 (2017) no. 2, p. 1205--1234 | DOI | MR | Zbl
[26] Eisenstein cohomology of arithmetic groups: The case , Invent. Math., Volume 89 (1987), pp. 37-118 | DOI | MR
[27] On the critical values of -functions of and , Duke Math. J., Volume 74 (1994) no. 2, pp. 432-528 | MR | Zbl
[28] A generalization of formal schemes and rigid analytic varieties, Math. Z., Volume 217 (1994) no. 4, pp. 513-551 | DOI | MR | Zbl
[29] Modular symbols for reductive groups and -adic Rankin–Selberg convolutions over number fields, J. Reine Angew. Math., Volume 653 (2011), pp. 1-45 | DOI | MR | Zbl
[30] On -adic -functions for over totally real fields, Int. Math. Res. Not., Volume 2015 (2015) no. 17, pp. 7884-7949 | DOI | MR | Zbl
[31] Irreducible components of extended eigenvarieties and interpolating Langlands functoriality, Math. Res. Lett., Volume 26 (2019) no. 1, pp. 159-201 | DOI | MR | Zbl
[32] -adic -functions for non-critical adjoint -values, Ph. D. Thesis, Columbia University (2019) | MR
[33] -adic integration on ray class groups and non-ordinary -adic -functions, Iwasawa 2012: State of the art and recent advances (Contributions in Mathematical and Computational Sciences), Volume 7, Springer, 2012, pp. 357-378 | DOI | MR | Zbl
[34] -adic -functions for (preprint)
[35] Eisenstein cohomology and the construction of -adic analytic -functions, Compos. Math., Volume 124 (2000) no. 3, pp. 253-304 | DOI | MR | Zbl
[36] The behaviour of Galois Gauss sums with respect to restriction of characters, Ph. D. Thesis, Cornell University (1972)
[37] Overconvergent modular symbols, 2011 (Lecture Notes from the Arizona Winter School)
[38] Overconvergent modular symbols and -adic -functions, Ann. Sci. Éc. Norm. Supér., Volume 44 (2011) no. 1, pp. 1-42 | DOI | Numdam | MR | Zbl
[39] Critical slope -adic -functions, J. Lond. Math. Soc., Volume 87 (2013) no. 2, pp. 428-452 | DOI | MR | Zbl
[40] On certain period relations for cusp forms on , Int. Math. Res. Not., Volume 2008 (2008), rnn077, 23 pages | Zbl
[41] On level one cuspidal Bianchi modular forms, LMS J. Comput. Math., Volume 16 (2013), pp. 187-199 | DOI | MR | Zbl
[42] Genuine Bianchi modular forms of higher level at varying weight and discriminant, J. Théor. Nombres Bordeaux, Volume 31 (2019) no. 1, pp. 27-48 | DOI | Numdam | MR | Zbl
[43] Rigid analytic modular symbols (1994) (preprint)
[44] Integral period relations and congruences (2018) (https://arxiv.org/abs/1811.11166)
[45] Eigenvarieties for reductive groups, Ann. Math., Volume 174 (2011) no. 3, pp. 1285-11081 | MR | Zbl
[46] -adic -functions of Bianchi modular forms, Proc. Lond. Math. Soc., Volume 114 (2017) no. 4, pp. 614-656 | DOI | MR | Zbl
Cited by Sources: