Les familles des classes de cohomologie compatibles pour l’application norme, définies pour les variétés de Shimura et pour d’autres espaces arithmétiques symétriques, jouent un rôle important dans la théorie d’Iwasawa des formes automorphes. Dans cette note, nous développons une approche systématique pour établir la compatibilité dans le cas « vertical » (c’est-à-dire dans le cas où le niveau ne change qu’en un nombre premier fixé
Norm-compatible families of cohomology classes for Shimura varieties, and other arithmetic symmetric spaces, play an important role in Iwasawa theory of automorphic forms. The aim of this note is to give a systematic approach to proving “vertical” norm-compatibility relations for such classes (where the level varies at a fixed prime
Accepté le :
Publié le :
Mots-clés : Euler systems, norm relations, spherical varieties
@article{JTNB_2021__33_3.2_1021_0, author = {Loeffler, David}, title = {Spherical varieties and norm relations in {Iwasawa} theory}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {1021--1043}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {33}, number = {3.2}, year = {2021}, doi = {10.5802/jtnb.1186}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jtnb.1186/} }
TY - JOUR AU - Loeffler, David TI - Spherical varieties and norm relations in Iwasawa theory JO - Journal de théorie des nombres de Bordeaux PY - 2021 SP - 1021 EP - 1043 VL - 33 IS - 3.2 PB - Société Arithmétique de Bordeaux UR - https://www.numdam.org/articles/10.5802/jtnb.1186/ DO - 10.5802/jtnb.1186 LA - en ID - JTNB_2021__33_3.2_1021_0 ER -
%0 Journal Article %A Loeffler, David %T Spherical varieties and norm relations in Iwasawa theory %J Journal de théorie des nombres de Bordeaux %D 2021 %P 1021-1043 %V 33 %N 3.2 %I Société Arithmétique de Bordeaux %U https://www.numdam.org/articles/10.5802/jtnb.1186/ %R 10.5802/jtnb.1186 %G en %F JTNB_2021__33_3.2_1021_0
Loeffler, David. Spherical varieties and norm relations in Iwasawa theory. Journal de théorie des nombres de Bordeaux, Tome 33 (2021) no. 3.2, pp. 1021-1043. doi : 10.5802/jtnb.1186. https://www.numdam.org/articles/10.5802/jtnb.1186/
[1]
[2] Vertical distribution relations for special cycles on unitary Shimura varieties, Int. Math. Res. Not., Volume 2020 (2020) no. 13, pp. 3902-3926 | DOI | MR | Zbl
[3] Classification des espaces homogènes sphériques, Compos. Math., Volume 63 (1987) no. 2, pp. 189-208 | Numdam
[4] Norm-compatible systems of cohomology classes for
[5] Norm-compatible systems of Galois cohomology classes for
[6] An Euler system of Heegner type (2018) (https://webusers.imj-prg.fr/~christophe.cornut/papers/ESHT.pdf)
[7] Diagonal cycles and Euler systems I: a
[8] Travaux de Shimura (Exp. No. 389), Séminaire Bourbaki, 23ème année (1970/71) (Lecture Notes in Mathematics), Volume 244, Springer, 1970, pp. 123-165 | DOI | Numdam
[9]
[10] On the interpolation of systems of eigenvalues attached to automorphic Hecke eigenforms, Invent. Math., Volume 164 (2006) no. 1, pp. 1-84 | DOI | MR | Zbl
[11] Arithmetic Eisenstein classes on the Siegel space: some computations, Number fields and function fields—two parallel worlds (Progress in Mathematics), Volume 239, Birkhäuser, 2005, pp. 0-8176 | MR | Zbl
[12] Anticyclotomic Euler systems for unitary groups (2020) (https://arxiv.org/abs/2001.07825)
[13] Euler systems for
[14] Modular symbols for reductive groups and
[15] Heegner points in Coleman families, Proc. Lond. Math. Soc., Volume 122 (2021) no. 1, pp. 124-152 | DOI | MR | Zbl
[16]
[17] Relative modular symbols and Rankin–Selberg convolutions, J. Reine Angew. Math., Volume 519 (2000), pp. 97-141 | MR | Zbl
[18] Euler systems for Rankin–Selberg convolutions of modular forms, Ann. Math., Volume 180 (2014) no. 2, pp. 653-771 | DOI | MR | Zbl
[19] Euler systems for Hilbert modular surfaces, Forum Math. Sigma, Volume 6 (2018), e23, 67 pages | DOI | MR | Zbl
[20] Euler systems for
[21]
[22] Rankin–Eisenstein classes in Coleman families, Res. Math. Sci., Volume 3 (2016), 29, 53 pages | DOI | MR | Zbl
[23] Introduction to Shimura varieties, Harmonic analysis, the trace formula, and Shimura varieties (Clay Mathematics Proceedings), Volume 4, American Mathematical Society, 2005, pp. 265-378 | MR | Zbl
[24] A guide to Mackey functors, Handbook of Algebra. Vol. 2, Volume 2, North-Holland, 2000, pp. 1570-7954 | DOI | MR | Zbl
- Control theorems for Hilbert modular varieties, Canadian Mathematical Bulletin (2025), p. 1 | DOI:10.4153/s0008439524000791
- Special cycles on orthogonal Shimura varieties, arXiv (2021) | DOI:10.48550/arxiv.2111.07475 | arXiv:2111.07475
- Euler Systems for
, arXiv (2020) | DOI:10.48550/arxiv.2011.12894 | arXiv:2011.12894 - Anticyclotomic Euler systems for unitary groups, arXiv (2020) | DOI:10.48550/arxiv.2001.07825 | arXiv:2001.07825
- An Euler system for GU(2, 1), arXiv (2020) | DOI:10.48550/arxiv.2010.10946 | arXiv:2010.10946
Cité par 5 documents. Sources : Crossref, NASA ADS