Perfectoid Drinfeld Modular Forms
Journal de théorie des nombres de Bordeaux, Volume 33 (2021) no. 3.2, pp. 1045-1067.

In the first part, we revisit Drinfeld modular curves associated to GL(2) from the perfectoid point of view, and we show how to recover (a perfectized) part of the theory of overconvergent π-adic Drinfeld modular forms. In the second part, we review open problems for families of Drinfeld modular forms for GL(n).

Dans la première partie, nous revenons sur les courbes modulaires de Drinfeld associée à GL(2) en adoptant le point de vue perfectoïde, et nous montrons comment récupérer une portion (perfectisée) de la théorie des formes modulaires de Drinfeld π-adiques surconvergentes. Dans la seconde partie, nous présentons quelques problèmes ouverts portant sur les familles de formes modulaires de Drinfeld pour GL(n).

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/jtnb.1187
Classification: 11F33, 11F52, 11G09
Keywords: $p$-adic families, Drinfeld modular forms, perfectoid spaces
Nicole, Marc-Hubert 1; Rosso, Giovanni 2

1 Laboratoire de Mathématiques Nicolas Oresme, CNRS UMR 6139, Université de Caen Basse Normandie 14032 Caen Cedex, France
2 Department of Mathematics and Statistics Montréal, Québec, Canada
@article{JTNB_2021__33_3.2_1045_0,
     author = {Nicole, Marc-Hubert and Rosso, Giovanni},
     title = {Perfectoid {Drinfeld} {Modular} {Forms}},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {1045--1067},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {33},
     number = {3.2},
     year = {2021},
     doi = {10.5802/jtnb.1187},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/jtnb.1187/}
}
TY  - JOUR
AU  - Nicole, Marc-Hubert
AU  - Rosso, Giovanni
TI  - Perfectoid Drinfeld Modular Forms
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2021
SP  - 1045
EP  - 1067
VL  - 33
IS  - 3.2
PB  - Société Arithmétique de Bordeaux
UR  - http://archive.numdam.org/articles/10.5802/jtnb.1187/
DO  - 10.5802/jtnb.1187
LA  - en
ID  - JTNB_2021__33_3.2_1045_0
ER  - 
%0 Journal Article
%A Nicole, Marc-Hubert
%A Rosso, Giovanni
%T Perfectoid Drinfeld Modular Forms
%J Journal de théorie des nombres de Bordeaux
%D 2021
%P 1045-1067
%V 33
%N 3.2
%I Société Arithmétique de Bordeaux
%U http://archive.numdam.org/articles/10.5802/jtnb.1187/
%R 10.5802/jtnb.1187
%G en
%F JTNB_2021__33_3.2_1045_0
Nicole, Marc-Hubert; Rosso, Giovanni. Perfectoid Drinfeld Modular Forms. Journal de théorie des nombres de Bordeaux, Volume 33 (2021) no. 3.2, pp. 1045-1067. doi : 10.5802/jtnb.1187. http://archive.numdam.org/articles/10.5802/jtnb.1187/

[1] Bandini, Andrea; Valentino, Maria On the Atkin U t -operator for Γ 1 (t)-invariant Drinfeld cusp forms, Int. J. Number Theory, Volume 14 (2018) no. 10, pp. 2599-2616 | DOI | MR | Zbl

[2] Bandini, Andrea; Valentino, Maria On the Atkin U t -operator for Γ 0 (t)-invariant Drinfeld cusp forms, Proc. Am. Math. Soc., Volume 147 (2019) no. 10, pp. 4171-4187 | DOI | MR | Zbl

[3] Bandini, Andrea; Valentino, Maria On the structure and slopes of Drinfeld cusp forms (2019) (https://arxiv.org/abs/1812.02032, to appear in Exp. Math.)

[4] Basson, Dirk; Breuer, Florian; Pink, Richard Drinfeld modular forms of arbitrary rank, Part I: Analytic Theory (2018) (https://arxiv.org/abs/1805.12335)

[5] Bhatt, Bhargav; Scholze, Peter Projectivity of the Witt vector affine Grassmannian, Invent. Math., Volume 209 (2017) no. 2, pp. 329-423 | DOI | MR | Zbl

[6] Birkbeck, Christopher; Heuer, Ben; Williams, Chris Overconvergent Hilbert modular forms via perfectoid modular varieties (2019) (https://arxiv.org/abs/1902.03985, to appear in Ann. Inst. Fourier)

[7] Böckle, Gebhard; Centeleghe, Tommaso Hecke characters associated to Drinfeld modular forms, Compos. Math., Volume 151 (2015) no. 11, pp. 2006-2058 | DOI | MR | Zbl

[8] Böckle, Gebhard; Pink, Richard Cohomological theory of crystals over function fields, EMS Tracts in Mathematics, 9, European Mathematical Society, 2009 | DOI

[9] Buzzard, Kevin Eigenvarieties, L-functions and Galois representations (London Mathematical Society Lecture Note Series), Volume 320, Cambridge University Press, 2007, pp. 59-120 | DOI | MR | Zbl

[10] Chojecki, Przemysław; Hansen, D.; Johansson, C. Overconvergent modular forms and perfectoid Shimura curves, Doc. Math., Volume 22 (2017), pp. 191-262 | MR | Zbl

[11] Coleman, Robert F. p-adic Banach spaces and families of modular forms, Invent. Math., Volume 127 (1997) no. 3, pp. 417-479 | DOI | MR | Zbl

[12] Emerton, Matthew A new proof of a theorem of Hida, Int. Math. Res. Not., Volume 1999 (1999) no. 9, pp. 453-472 | DOI | MR | Zbl

[13] Fargues, Laurent L’isomorphisme entre les tours de Lubin–Tate et de Drinfeld et applications cohomologiques, L’isomorphisme entre les tours de Lubin–Tate et de Drinfeld (Progress in Mathematics), Volume 262, Birkhäuser, 2008, pp. 1-325 | MR | Zbl

[14] Gekeler, Ernst-Ulrich de Rham cohomology and the Gauss–Manin connection for Drinfeld modules, p-adic analysis (Trento, 1989) (Lecture Notes in Mathematics), Volume 1454, Springer, 1989, pp. 223-255 | DOI | Zbl

[15] Goss, David Can a Drinfeld module be modular?, J. Ramanujan Math. Soc., Volume 17 (2002) no. 4, pp. 221-260 | MR | Zbl

[16] Hartl, Urs; Kim, Wansu Local Shtukas, Hodge–Pink Structures and Galois Representations, t-motives: Hodge structures, transcendence and other motivic aspects (EMS Series of Congress Reports), European Mathematical Society (2018) | Zbl

[17] Hartl, Urs; Singh, Rajneesh Kumar Local Shtukas and divisible local Anderson modules, Can. J. Math., Volume 71 (2019) no. 5, pp. 1163-1207 | DOI | MR | Zbl

[18] Hattori, Shin On the compactification of the Drinfeld modular curve of level Γ 1 Δ (n) (2017) (to appear in J. Number Theory)

[19] Hattori, Shin Table of t-adic slopes on Drinfeld modular forms (2018) (http://www.comm.tcu.ac.jp/~shinh/)

[20] Hattori, Shin Duality of Drinfeld modules and 𝔭-adic properties of Drinfeld modular forms, J. Lond. Math. Soc., Volume 103 (2021) no. 1, pp. 35-70 | DOI | MR | Zbl

[21] Hayes, David R. Explicit class field theory for rational function fields, Trans. Am. Math. Soc., Volume 189 (1974), pp. 77-91 | DOI | MR | Zbl

[22] van der Heiden, Gert-Jan Drinfeld modular curve and Weil pairing, J. Algebra, Volume 299 (2006) no. 1, pp. 374-418 | DOI | MR | Zbl

[23] Katz, Nicholas M. p-adic properties of modular schemes and modular forms, Modular functions of one variable, III (Lecture Notes in Mathematics), Volume 350, Springer, 1972, pp. 69-190 | DOI | Zbl

[24] Kedlaya, Kiran S.; Liu, Ruochuan Relative p-adic Hodge theory: foundations, Astérisque, 371, Société Mathématique de France, 2015

[25] Kedlaya, Kiran S.; Liu, Ruochuan Relative p-adic Hodge theory, II: Imperfect period rings (2016) (https://arxiv.org/abs/1602.06899)

[26] Lütkebohmert, Werner Der Satz von Remmert-Stein in der nichtarchimedischen Funktionentheorie, Math. Z., Volume 139 (1974), pp. 69-84 | DOI | MR | Zbl

[27] Marigonda, Nicola Towers of Drinfeld modular curves and special values of L-functions, Ph. D. Thesis, Università degli studi di Milano (2007)

[28] Nicole, Marc-Hubert; Rosso, Giovanni Familles de formes modulaires de Drinfeld pour le groupe général linéaire, Trans. Am. Math. Soc., Volume 374 (2021) no. 6, pp. 4227-4266 | DOI | Zbl

[29] Pink, Richard Compactification of Drinfeld modular varieties and Drinfeld modular forms of arbitrary rank, Manuscr. Math., Volume 140 (2013) no. 3-4, pp. 333-361 | DOI | MR | Zbl

[30] Scholze, Peter Perfectoid spaces, Publ. Math., Inst. Hautes Étud. Sci., Volume 116 (2012), pp. 245-313 | DOI | MR | Zbl

[31] Scholze, Peter p-adic Hodge theory for rigid-analytic varieties, Forum Math. Pi, Volume 1 (2013), e1, 77 pages | MR | Zbl

[32] Scholze, Peter Perfectoid spaces: a survey, Current developments in mathematics 2012, International Press, 2013, pp. 193-227 | MR | Zbl

[33] Scholze, Peter On torsion in the cohomology of locally symmetric varieties, Ann. Math., Volume 182 (2015) no. 3, pp. 945-1066 | DOI | MR | Zbl

[34] Scholze, Peter; Weinstein, Jared Berkeley lectures on p-adic geometry, 2014 (Lecture notes from course at UC Berkeley in Fall 2014, available at https://math.berkeley.edu/~jared/Math274/ScholzeLectures.pdf) | Zbl

[35] the Stacks Project Authors Stacks Project, 2018 (http://stacks.math.columbia.edu)

[36] Takahashi, Toyofumi Good reduction of elliptic modules, J. Math. Soc. Japan, Volume 34 (1982) no. 3, pp. 475-487 | MR | Zbl

Cited by Sources: