Hasse démontra que les nombres premiers
Hasse showed the existence and computed the Dirichlet density of the set of primes
@article{JTNB_2007__19_1_41_0, author = {Ballot, Christian}, title = {Counting monic irreducible polynomials $P$ in ${\mathbb{F}_q[X]}$ for which order of ${X\!\!\hspace{4.44443pt}(\@mod \; P)}$ is odd}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {41--58}, publisher = {Universit\'e Bordeaux 1}, volume = {19}, number = {1}, year = {2007}, doi = {10.5802/jtnb.572}, zbl = {1142.11082}, mrnumber = {2332052}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jtnb.572/} }
TY - JOUR AU - Ballot, Christian TI - Counting monic irreducible polynomials $P$ in ${\mathbb{F}_q[X]}$ for which order of ${X\!\!\hspace{4.44443pt}(\@mod \; P)}$ is odd JO - Journal de théorie des nombres de Bordeaux PY - 2007 SP - 41 EP - 58 VL - 19 IS - 1 PB - Université Bordeaux 1 UR - https://www.numdam.org/articles/10.5802/jtnb.572/ DO - 10.5802/jtnb.572 LA - en ID - JTNB_2007__19_1_41_0 ER -
%0 Journal Article %A Ballot, Christian %T Counting monic irreducible polynomials $P$ in ${\mathbb{F}_q[X]}$ for which order of ${X\!\!\hspace{4.44443pt}(\@mod \; P)}$ is odd %J Journal de théorie des nombres de Bordeaux %D 2007 %P 41-58 %V 19 %N 1 %I Université Bordeaux 1 %U https://www.numdam.org/articles/10.5802/jtnb.572/ %R 10.5802/jtnb.572 %G en %F JTNB_2007__19_1_41_0
Ballot, Christian. Counting monic irreducible polynomials $P$ in ${\mathbb{F}_q[X]}$ for which order of ${X\!\!\hspace{4.44443pt}(\@mod \; P)}$ is odd. Journal de théorie des nombres de Bordeaux, Tome 19 (2007) no. 1, pp. 41-58. doi : 10.5802/jtnb.572. https://www.numdam.org/articles/10.5802/jtnb.572/
[Ba1] C. Ballot, Density of prime divisors of linear recurrences. Memoirs of the A.M.S., vol. 115, Nu. 551 (1995). | MR | Zbl
[Ba2] C. Ballot, Competing prime asymptotic densities in
[Ba3] C. Ballot, An elementary method to compute prime densities in
[Des] R. Descombes, Éléments de théorie des nombres. Presses Universitaires de France (1986). | MR | Zbl
[Ga] J. von zur Gathen et als, Average order in cyclic groups. J. Theor. Nombres Bordx, vol. 16, Nu. 1, (2004), 107–123. | Numdam | MR | Zbl
[Ha] H. H. Hasse, Über die Dichte der Primzahlen
[Lag] J. C. Lagarias, The set of primes dividing the Lucas Numbers has density 2/3. Pacific J. Math., vol. 118, Nu. 2 (1985), 449–461 and “Errata”, vol. 162 (1994), 393–396. | Zbl
[Lan] S. Lang, Algebraic Number Theory. Springer-Verlag, 1986. | MR | Zbl
[Lax] R. R. Laxton, Arithmetic Properties of Linear Recurrences. Computers and Number Theory (A.O.L. Atkin and B.J. Birch, Eds.), Academic Press, New York, 1971, 119–124. | Zbl
[Mo1] P. Moree, On the prime density of Lucas sequences. J. Theor. Nombres Bordx, vol. 8, Nu. 2, (1996), 449–459. | Numdam | MR | Zbl
[Mo2] P. Moree, On the average number of elements in a finite field with order or index in a prescribed residue class. Finite fields Appl., vol. 10, Nu. 3, (2004), 438–463. | MR | Zbl
[M-S] P. Moree & P. Stevenhagen, Prime divisors of Lucas sequences. Acta Arithm., vol. 82, Nu. 4, (1997), 403–410. | MR | Zbl
[Nar] W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers. PWN - Polish Scientific Publishers, 1974. | MR | Zbl
[Pra] K. Prachar, Primzahlverteilung. Springer-Verlag, 1957. | MR | Zbl
[Ro] M. Rosen, Number Theory in Function Fields. Springer-Verlag, Graduate texts in mathematics 210, 2002. | MR | Zbl
[Ser] J. P. Serre, A course in Arithmetic. Springer-Verlag, 1973. | MR | Zbl
[Sier] W. Sierpinski, Sur une décomposition des nombres premiers en deux classes. Collect. Math., vol. 10, (1958), 81–83. | MR | Zbl
[Sti] H. Stichtenoth, Algebraic Function Fields and Codes. Springer-Verlag, 1993. | MR | Zbl
Cité par Sources :