Hasse showed the existence and computed the Dirichlet density of the set of primes for which the order of is odd; it is . Here we mimic successfully Hasse’s method to compute the density of monic irreducibles in for which the order of is odd. But on the way, we are also led to a new and elementary proof of these densities. More observations are made, and averages are considered, in particular, an average of the ’s as varies through all rational primes.
Hasse démontra que les nombres premiers pour lesquels l’ordre de modulo est impair ont une densité de Dirichlet égale à -ième. Dans cet article, nous parvenons à imiter la méthode de Hasse afin d’obtenir la densité de Dirichlet de l’ensemble des polynômes irréductibles et unitaires de l’anneau pour lesquels l’ordre de est impair. Puis nous présentons une seconde preuve, nouvelle, élémentaire et effective de ces densités. D’autres observations sont faites et des moyennes de densités sont calculées, notamment la moyenne des lorsque parcourt l’ensemble des nombres premiers.
@article{JTNB_2007__19_1_41_0, author = {Ballot, Christian}, title = {Counting monic irreducible polynomials $P$ in ${\mathbb{F}_q[X]}$ for which order of ${X\!\!\hspace{4.44443pt}(\@mod \; P)}$ is odd}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {41--58}, publisher = {Universit\'e Bordeaux 1}, volume = {19}, number = {1}, year = {2007}, doi = {10.5802/jtnb.572}, zbl = {1142.11082}, mrnumber = {2332052}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.572/} }
TY - JOUR AU - Ballot, Christian TI - Counting monic irreducible polynomials $P$ in ${\mathbb{F}_q[X]}$ for which order of ${X\!\!\hspace{4.44443pt}(\@mod \; P)}$ is odd JO - Journal de théorie des nombres de Bordeaux PY - 2007 SP - 41 EP - 58 VL - 19 IS - 1 PB - Université Bordeaux 1 UR - http://archive.numdam.org/articles/10.5802/jtnb.572/ DO - 10.5802/jtnb.572 LA - en ID - JTNB_2007__19_1_41_0 ER -
%0 Journal Article %A Ballot, Christian %T Counting monic irreducible polynomials $P$ in ${\mathbb{F}_q[X]}$ for which order of ${X\!\!\hspace{4.44443pt}(\@mod \; P)}$ is odd %J Journal de théorie des nombres de Bordeaux %D 2007 %P 41-58 %V 19 %N 1 %I Université Bordeaux 1 %U http://archive.numdam.org/articles/10.5802/jtnb.572/ %R 10.5802/jtnb.572 %G en %F JTNB_2007__19_1_41_0
Ballot, Christian. Counting monic irreducible polynomials $P$ in ${\mathbb{F}_q[X]}$ for which order of ${X\!\!\hspace{4.44443pt}(\@mod \; P)}$ is odd. Journal de théorie des nombres de Bordeaux, Volume 19 (2007) no. 1, pp. 41-58. doi : 10.5802/jtnb.572. http://archive.numdam.org/articles/10.5802/jtnb.572/
[Ba1] C. Ballot, Density of prime divisors of linear recurrences. Memoirs of the A.M.S., vol. 115, Nu. 551 (1995). | MR | Zbl
[Ba2] C. Ballot, Competing prime asymptotic densities in . A discussion. Submitted preprint.
[Ba3] C. Ballot, An elementary method to compute prime densities in . To appear in Integers.
[Des] R. Descombes, Éléments de théorie des nombres. Presses Universitaires de France (1986). | MR | Zbl
[Ga] J. von zur Gathen et als, Average order in cyclic groups. J. Theor. Nombres Bordx, vol. 16, Nu. 1, (2004), 107–123. | Numdam | MR | Zbl
[Ha] H. H. Hasse, Über die Dichte der Primzahlen , für die eine vorgegebene ganzrationale Zahl von gerader bzw. ungerader Ordnung mod ist. Math. Annale 166 (1966), 19–23. | MR | Zbl
[Lag] J. C. Lagarias, The set of primes dividing the Lucas Numbers has density 2/3. Pacific J. Math., vol. 118, Nu. 2 (1985), 449–461 and “Errata”, vol. 162 (1994), 393–396. | Zbl
[Lan] S. Lang, Algebraic Number Theory. Springer-Verlag, 1986. | MR | Zbl
[Lax] R. R. Laxton, Arithmetic Properties of Linear Recurrences. Computers and Number Theory (A.O.L. Atkin and B.J. Birch, Eds.), Academic Press, New York, 1971, 119–124. | Zbl
[Mo1] P. Moree, On the prime density of Lucas sequences. J. Theor. Nombres Bordx, vol. 8, Nu. 2, (1996), 449–459. | Numdam | MR | Zbl
[Mo2] P. Moree, On the average number of elements in a finite field with order or index in a prescribed residue class. Finite fields Appl., vol. 10, Nu. 3, (2004), 438–463. | MR | Zbl
[M-S] P. Moree & P. Stevenhagen, Prime divisors of Lucas sequences. Acta Arithm., vol. 82, Nu. 4, (1997), 403–410. | MR | Zbl
[Nar] W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers. PWN - Polish Scientific Publishers, 1974. | MR | Zbl
[Pra] K. Prachar, Primzahlverteilung. Springer-Verlag, 1957. | MR | Zbl
[Ro] M. Rosen, Number Theory in Function Fields. Springer-Verlag, Graduate texts in mathematics 210, 2002. | MR | Zbl
[Ser] J. P. Serre, A course in Arithmetic. Springer-Verlag, 1973. | MR | Zbl
[Sier] W. Sierpinski, Sur une décomposition des nombres premiers en deux classes. Collect. Math., vol. 10, (1958), 81–83. | MR | Zbl
[Sti] H. Stichtenoth, Algebraic Function Fields and Codes. Springer-Verlag, 1993. | MR | Zbl
Cited by Sources: