Un irrationnel quadratique
Given a quadratic irrational
@article{JTNB_2010__22_2_449_0, author = {Rittaud, Beno{\^\i}t}, title = {On subsequences of convergents to a quadratic irrational given by some numerical schemes}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {449--474}, publisher = {Universit\'e Bordeaux 1}, volume = {22}, number = {2}, year = {2010}, doi = {10.5802/jtnb.726}, zbl = {1223.11087}, mrnumber = {2769073}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jtnb.726/} }
TY - JOUR AU - Rittaud, Benoît TI - On subsequences of convergents to a quadratic irrational given by some numerical schemes JO - Journal de théorie des nombres de Bordeaux PY - 2010 SP - 449 EP - 474 VL - 22 IS - 2 PB - Université Bordeaux 1 UR - https://www.numdam.org/articles/10.5802/jtnb.726/ DO - 10.5802/jtnb.726 LA - en ID - JTNB_2010__22_2_449_0 ER -
%0 Journal Article %A Rittaud, Benoît %T On subsequences of convergents to a quadratic irrational given by some numerical schemes %J Journal de théorie des nombres de Bordeaux %D 2010 %P 449-474 %V 22 %N 2 %I Université Bordeaux 1 %U https://www.numdam.org/articles/10.5802/jtnb.726/ %R 10.5802/jtnb.726 %G en %F JTNB_2010__22_2_449_0
Rittaud, Benoît. On subsequences of convergents to a quadratic irrational given by some numerical schemes. Journal de théorie des nombres de Bordeaux, Tome 22 (2010) no. 2, pp. 449-474. doi : 10.5802/jtnb.726. https://www.numdam.org/articles/10.5802/jtnb.726/
[1] E. Burger, On Newton’s method and rational approximations to quadratic irrationals. Canad. Math. Bull. 47 (2004), 12–16. | MR | Zbl
[2] G. Hardy and E. Wright, An Introduction to the Theory of Numbers. Oxford University Press, 1965.
[3] T. Komatsu, Continued fractions and Newton’s approximations, II. Fibonacci Quart. 39 (2001), 336–338. | MR | Zbl
[4] G. Rieger, The golden section and Newton approximation. Fibonacci Quart. 37 (1999), 178–179. | MR | Zbl
[5] D. Rosen, A class of continued fractions associated with certain properly discontinuous groups. Duke Math. J. 21 (1954), 549–563. | MR | Zbl
[6] J.-A. Serret, Sur le développement en fraction continue de la racine carrée d’un nombre entier. J. Math. Pures Appl. XII (1836), 518–520.
Cité par Sources :