Let be a curve of genus defined over the fraction field of a complete discrete valuation ring with algebraically closed residue field. Suppose that and that the characteristic of the residue field is not . Suppose that the Jacobian has semi-stable reduction over . Embed in using a -rational point. We show that the coordinates of the torsion points lying on lie in the unique tamely ramified quadratic extension of the field generated over by the coordinates of the -torsion points on .
Soit une courbe de genre définie sur le corps de fractions d’un anneau de valuation discret dont le corps résiduel est algébriquement clos. On suppose que et que la caractéristique résiduelle de n’est pas . On suppose aussi que la jacobienne de a réduction semi-stable sur . On plonge dans via a un point -rationnel. Nous montrons que les coordonnées des points de torsion de qui se trouvent dans sont dans l’unique extension modérément ramifiée du corps engendré par les coordonnées des points de -torsion de .
@article{JTNB_2010__22_2_475_0, author = {R\"ossler, Damian}, title = {A note on the ramification of torsion points lying on curves of genus at least two}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {475--481}, publisher = {Universit\'e Bordeaux 1}, volume = {22}, number = {2}, year = {2010}, doi = {10.5802/jtnb.727}, zbl = {1223.11075}, mrnumber = {2769074}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.727/} }
TY - JOUR AU - Rössler, Damian TI - A note on the ramification of torsion points lying on curves of genus at least two JO - Journal de théorie des nombres de Bordeaux PY - 2010 SP - 475 EP - 481 VL - 22 IS - 2 PB - Université Bordeaux 1 UR - http://archive.numdam.org/articles/10.5802/jtnb.727/ DO - 10.5802/jtnb.727 LA - en ID - JTNB_2010__22_2_475_0 ER -
%0 Journal Article %A Rössler, Damian %T A note on the ramification of torsion points lying on curves of genus at least two %J Journal de théorie des nombres de Bordeaux %D 2010 %P 475-481 %V 22 %N 2 %I Université Bordeaux 1 %U http://archive.numdam.org/articles/10.5802/jtnb.727/ %R 10.5802/jtnb.727 %G en %F JTNB_2010__22_2_475_0
Rössler, Damian. A note on the ramification of torsion points lying on curves of genus at least two. Journal de théorie des nombres de Bordeaux, Volume 22 (2010) no. 2, pp. 475-481. doi : 10.5802/jtnb.727. http://archive.numdam.org/articles/10.5802/jtnb.727/
[1] Baker, M; Poonen, B., Torsion packets on curves. Compositio Math. 127 (2001), 109–116. | MR | Zbl
[2] Baker, M.; Ribet, K., Galois theory and torsion points on curves. J. Théor. Nombres Bordeaux 15 (2003), 11–32. | Numdam | MR | Zbl
[3] Boxall, J., Autour d’un problème de Coleman. C. R. Acad. Sci. Paris Sér. I Math. 315 (1992), 1063–1066. | MR | Zbl
[4] Boxall, J., Sous-variétés algébriques de variétés semi-abéliennes sur un corps fini. Number theory 1992-1993. London Math. Soc. Lecture Note Ser. 215, 69–80. Cambridge Univ. Press, 1995. | MR | Zbl
[5] Coleman, R., Ramified torsion points on curves. Duke Math. J. 54 (1987), 615–640. | MR | Zbl
[6] Groupes de monodromie en géométrie algébrique. I. Lecture Notes in Mathematics, Vol. 288. Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 I); Dirigé par A. Grothendieck. Avec la collaboration de M. Raynaud et D. S. Rim. Springer-Verlag, Berlin, 1972. | MR | Zbl
[7] Hartshorne, R., Algebraic geometry. Graduate Texts in Mathematics, No. 52. Springer-Verlag, 1977. | MR | Zbl
[8] Rössler, D., A note on the Manin-Mumford conjecture. Number fields and function fields—two parallel worlds. Progr. Math. 239, 311–318. Birkhäuser, 2005. | MR | Zbl
[9] Serre, J.-P., Local fields. Graduate Texts in Mathematics 67. Springer-Verlag, 1979. Duke Math. J. 106 (2001), 281–319. | MR | Zbl
[10] Tamagawa, A., Ramification of torsion points on curves with ordinary semistable Jacobian varieties. Duke Math. J. 106 (2001), 281–319. | MR | Zbl
Cited by Sources: