Let be a locally compact non-Archimedean field, and let be a division algebra of dimension 4. The Jacquet-Langlands correspondence provides a bijection between smooth irreducible representations of of dimension and irreducible cuspidal representations of . We present a new construction of this bijection in which the preservation of epsilon factors is automatic. This is done by constructing a family of pairs , where is an order and is a finite-dimensional representation of a certain subgroup of containing . Let be an irreducible representation of ; we show that contains such a if and only if is cuspidal and corresponds to under Jacquet-Langlands, and also that every and arises this way. The agreement of epsilon factors is reduced to a Fourier-analytic calculation on a finite ring quotient of .
Soit un corps local non archimédien et localement compact, et soit un corps de quaternions. La correspondance de Jacquet-Langlands fournit une bijection entre les représentations lisses et irréductibles de de dimension et les représentations cuspidales et irréductibles de . Nous présentons une nouvelle construction de cette bijection pour laquelle la préservation des facteurs epsilon est automatique. Nous construisons une famille de paires , ou est un ordre et est une représentation d’une certaine sous-groupe de qui contient . Soit une représentation irréductible de ; nous prouvons que contient une telle si et seulement si est cuspidale et correspond à sous la correspondence de Jacquet-Langlands. On y voit tous les et les . L’égalité des facteurs epsilon est reduite à un calcul Fourier-analytique sur un anneau quotient de .
@article{JTNB_2010__22_2_483_0, author = {Weinstein, Jared}, title = {The local {Jacquet-Langlands} correspondence via {Fourier} analysis}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {483--512}, publisher = {Universit\'e Bordeaux 1}, volume = {22}, number = {2}, year = {2010}, doi = {10.5802/jtnb.728}, zbl = {1223.11066}, mrnumber = {2769075}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.728/} }
TY - JOUR AU - Weinstein, Jared TI - The local Jacquet-Langlands correspondence via Fourier analysis JO - Journal de théorie des nombres de Bordeaux PY - 2010 SP - 483 EP - 512 VL - 22 IS - 2 PB - Université Bordeaux 1 UR - http://archive.numdam.org/articles/10.5802/jtnb.728/ DO - 10.5802/jtnb.728 LA - en ID - JTNB_2010__22_2_483_0 ER -
%0 Journal Article %A Weinstein, Jared %T The local Jacquet-Langlands correspondence via Fourier analysis %J Journal de théorie des nombres de Bordeaux %D 2010 %P 483-512 %V 22 %N 2 %I Université Bordeaux 1 %U http://archive.numdam.org/articles/10.5802/jtnb.728/ %R 10.5802/jtnb.728 %G en %F JTNB_2010__22_2_483_0
Weinstein, Jared. The local Jacquet-Langlands correspondence via Fourier analysis. Journal de théorie des nombres de Bordeaux, Volume 22 (2010) no. 2, pp. 483-512. doi : 10.5802/jtnb.728. http://archive.numdam.org/articles/10.5802/jtnb.728/
[Bad02] Alexandru Ioan Badulescu, Correspondance de Jacquet-Langlands pour les corps locaux de caractéristique non nulle. Ann. Sci. École Norm. Sup. (4) 35 (2002), no. 5, 695–747. | Numdam | MR | Zbl
[BH00] Colin J. Bushnell and Guy Henniart, Correspondance de Jacquet-Langlands explicite. II. Le cas de degré égal à la caractéristique résiduelle. Manuscripta Math. 102 (2000), no. 2, 211–225. | MR | Zbl
[BH05] —, Local tame lifting for . III. Explicit base change and Jacquet-Langlands correspondence. J. Reine Angew. Math. 580 (2005), 39–100. | MR | Zbl
[BH06] C. Bushnell and G. Henniart, The local langlands conjecture for . Springer-Verlag, 2006. | MR | Zbl
[BK93] Colin J. Bushnell and Philip C. Kutzko, The admissible dual of via compact open subgroups. Annals of Mathematics Studies, vol. 129, Princeton University Press, Princeton, NJ, 1993. | MR | Zbl
[BW04] I. Bouw and S. Wewers, Stable reduction of modular curves. Modular Curves and abelian varieties, Birkhauser, 2004. | MR | Zbl
[Car86] H. Carayol, Sur les représentations -adiques associées aux formes modulaires de Hilbert. Annales scientifiques de l’É.N.S. 19 (1986), no. 3, 409–468. | Numdam | MR | Zbl
[DKV84] P. Deligne, D. Kazhdan, and M.-F. Vignéras, Représentations des algèbres centrales simples -adiques. Representations of reductive groups over a local field, Travaux en Cours, Hermann, Paris, 1984, pp. 33–117. | MR | Zbl
[Gér77] Paul Gérardin, Weil representations associated to finite fields. J. Algebra 46 (1977), no. 1, 54–101. | MR | Zbl
[Gér79] —, Cuspidal unramified series for central simple algebras over local fields. Automorphic forms, representations and -functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 157–169. | MR | Zbl
[GH07] S. Gurevich and R. Hadani, The geometric Weil representation. Selecta Mathematica 13 (2007), no. 3, 465–481. | MR | Zbl
[GH08] S. Gurevich and R. Hadani., On the diagonalization of the discrete Fourier transform. Applied and Computational Harmonic Analysis (2008). | MR | Zbl
[GJ72] Roger Godement and Hervé Jacquet, Zeta functions of simple algebras. Lecture Notes in Mathematics, Vol. 260, Springer-Verlag, Berlin, 1972. | MR | Zbl
[GL85] Paul Gérardin and Wen-Ch’ing Winnie Li, Fourier transforms of representations of quaternions. J. Reine Angew. Math. 359 (1985), 121–173. | MR | Zbl
[Hen93a] Guy Henniart, Caractérisation de la correspondance de Langlands locale par les facteurs de paires. Invent. Math. 113 (1993), no. 2, 339–350. | MR | Zbl
[Hen93b] —, Correspondance de Jacquet-Langlands explicite. I. Le cas modéré de degré premier. Séminaire de Théorie des Nombres, Paris, 1990–91, Progr. Math., vol. 108, Birkhäuser Boston, Boston, MA, 1993, pp. 85–114. | MR | Zbl
[How77] Roger E. Howe, Tamely ramified supercuspidal representations of . Pacific J. Math. 73 (1977), no. 2, 437–460. | MR | Zbl
[JL70] Hervé Jacquet and Robert Langlands, Automorphic forms on . Lecture Notes in Mathematics, vol. 114, Springer-Verlag, Berlin-New York, 1970. | MR | Zbl
[Kon63] Takeshi Kondo, On Gaussian sums attached to the general linear groups over finite fields. J. Math. Soc. Japan 15 (1963), 244–255. | MR | Zbl
[Lus78] George Lusztig, Representations of finite Chevalley groups. CBMS Regional Conference Series in Mathematics, vol. 39, American Mathematical Society, Providence, R.I., 1978, Expository lectures from the CBMS Regional Conference held at Madison, Wis., August 8–12, 1977. | MR | Zbl
[Mac73] I.G. Macdonald, Symmetric functions and Hall polynomials. Oxford University Press, 1973. | MR | Zbl
[Rog83] Jonathan D. Rogawski, Representations of and division algebras over a -adic field. Duke Math. J. 50 (1983), no. 1, 161–196. | MR | Zbl
[Sno09] Andrew Snowden, The Jacquet-Langlands correspondence for . Ph. D. Thesis, 2009. | MR
[Yos09] Teruyoshi Yoshida, On non-abelian Lubin-Tate theory via vanishing cycles. Adv. Stud. Pure Math. 58 (2010), 361–402. | MR
Cited by Sources: