We construct a concrete example of a -parameter family of smooth projective geometrically integral varieties over an open subscheme of such that there is exactly one rational fiber with no rational points. This makes explicit a construction of Poonen.
On construit un exemple concret d’une famille à un paramètre de variétés lisses, projectives, et géométriquement intègres sur un sous-schéma ouvert de , de sorte qu’il y ait précisément une fibre rationnelle sans point rationnel. Ceci rend explicite une construction de Poonen.
@article{JTNB_2010__22_3_741_0, author = {Viray, Bianca}, title = {A family of varieties with exactly one pointless rational fiber}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {741--745}, publisher = {Universit\'e Bordeaux 1}, volume = {22}, number = {3}, year = {2010}, doi = {10.5802/jtnb.743}, zbl = {1222.14040}, mrnumber = {2769342}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.743/} }
TY - JOUR AU - Viray, Bianca TI - A family of varieties with exactly one pointless rational fiber JO - Journal de théorie des nombres de Bordeaux PY - 2010 SP - 741 EP - 745 VL - 22 IS - 3 PB - Université Bordeaux 1 UR - http://archive.numdam.org/articles/10.5802/jtnb.743/ DO - 10.5802/jtnb.743 LA - en ID - JTNB_2010__22_3_741_0 ER -
%0 Journal Article %A Viray, Bianca %T A family of varieties with exactly one pointless rational fiber %J Journal de théorie des nombres de Bordeaux %D 2010 %P 741-745 %V 22 %N 3 %I Université Bordeaux 1 %U http://archive.numdam.org/articles/10.5802/jtnb.743/ %R 10.5802/jtnb.743 %G en %F JTNB_2010__22_3_741_0
Viray, Bianca. A family of varieties with exactly one pointless rational fiber. Journal de théorie des nombres de Bordeaux, Volume 22 (2010) no. 3, pp. 741-745. doi : 10.5802/jtnb.743. http://archive.numdam.org/articles/10.5802/jtnb.743/
[1] Wieb Bosma, John Cannon, Catherine Playoust, The Magma algebra system. I. The user language. J. Symbolic Comput. 24 (1997), 235–265. | MR | Zbl
[2] Henri Cohen Number theory. Vol. I. Tools and Diophantine equations Springer, 2007. | MR | Zbl
[3] Jean-Louis Colliot-Thélène, Jean-Jacques Sansuc, Peter Swinnerton-Dyer Intersections of two quadrics and Châtelet surfaces. I. J. Reine Angew. Math. 373 (1987), 37–107. | MR | Zbl
[4] Jean-Louis Colliot-Thélène, Jean-Jacques Sansuc, Peter Swinnerton-Dyer Intersections of two quadrics and Châtelet surfaces. II. J. Reine Angew. Math. 374 (1987), 72–168. | MR | Zbl
[5] V.A. Iskovskih A counterexample to the Hasse principle for systems of two quadratic forms in five variables Mat. Zametki 10 (1971), 253–257 | MR | Zbl
[6] Bjorn Poonen Existence of rational points on smooth projective varieties J. Eur. Math. Soc. (JEMS) 3 529–543 | MR | Zbl
Cited by Sources: