In this expository note, we describe an arithmetic pairing associated to an isogeny between Abelian varieties over a finite field. We show that it generalises the Frey–Rück pairing, thereby giving a short proof of the perfectness of the latter.
Nous décrivons un accouplement arithmétique associé à une isogenie entre variétés abéliennes sur un corps fini. Nous montrons qu’il généralise l’accouplement de Frey et Rück, donnant ainsi une démonstration brève de la perfection de ce dernier.
@article{JTNB_2011__23_2_323_0, author = {Bruin, Peter}, title = {The {Tate} pairing for {Abelian} varieties over finite fields}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {323--328}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {23}, number = {2}, year = {2011}, doi = {10.5802/jtnb.764}, zbl = {1246.11123}, mrnumber = {2817932}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.764/} }
TY - JOUR AU - Bruin, Peter TI - The Tate pairing for Abelian varieties over finite fields JO - Journal de théorie des nombres de Bordeaux PY - 2011 SP - 323 EP - 328 VL - 23 IS - 2 PB - Société Arithmétique de Bordeaux UR - http://archive.numdam.org/articles/10.5802/jtnb.764/ DO - 10.5802/jtnb.764 LA - en ID - JTNB_2011__23_2_323_0 ER -
%0 Journal Article %A Bruin, Peter %T The Tate pairing for Abelian varieties over finite fields %J Journal de théorie des nombres de Bordeaux %D 2011 %P 323-328 %V 23 %N 2 %I Société Arithmétique de Bordeaux %U http://archive.numdam.org/articles/10.5802/jtnb.764/ %R 10.5802/jtnb.764 %G en %F JTNB_2011__23_2_323_0
Bruin, Peter. The Tate pairing for Abelian varieties over finite fields. Journal de théorie des nombres de Bordeaux, Volume 23 (2011) no. 2, pp. 323-328. doi : 10.5802/jtnb.764. http://archive.numdam.org/articles/10.5802/jtnb.764/
[1] G. Frey and H.-G. Rück, A remark concerning -divisibility and the discrete logarithm in class groups of curves. Mathematics of Computation 62 (1994), 865–874. | MR | Zbl
[2] F. Heß, A note on the Tate pairing of curves over finite fields. Archiv der Mathematik 82 (2004), no. 1, 28-32. | MR | Zbl
[3] E. W. Howe, The Weil pairing and the Hilbert symbol. Mathematische Annalen 305 (1996), 387–392. | EuDML | MR | Zbl
[4] S. Lang, Abelian varieties over finite fields. Proceedings of the National Academy of Sciences of the U.S.A. 41 (1955), no. 3, 174–176. | MR | Zbl
[5] S. Lang, Abelian Varieties. Interscience, New York, 1959. | MR | Zbl
[6] S. Lichtenbaum, Duality theorems for curves over -adic fields. Inventiones Mathematicae 7 (1969), 120–136. | EuDML | MR | Zbl
[7] D. Mumford, Abelian Varieties. Tata Institute of Fundamental Research, Bombay, 1970. | MR | Zbl
[8] E. F. Schaefer, A new proof for the non-degeneracy of the Frey–Rück pairing and a connection to isogenies over the base field. In: T. Shaska (editor), Computational Aspects of Algebraic Curves (Conference held at the University of Idaho, 2005), 1–12. Lecture Notes Series in Computing 13. World Scientific Publishing, Hackensack, NJ, 2005. | MR | Zbl
[9] J-P. Serre, Corps locaux. Hermann, Paris, 1962. | MR | Zbl
[10] J. Tate, WC-groups over -adic fields. Séminaire Bourbaki, exposé 156. Secretariat mathématique, Paris, 1957. | Numdam | MR | Zbl
Cited by Sources: