The divisor problem for binary cubic forms
Journal de théorie des nombres de Bordeaux, Tome 23 (2011) no. 3, pp. 579-602.

Nous étudions l’ordre moyen du nombre de diviseurs des valeurs de certaines formes binaires cubiques qui ne sont pas irréductibles sur  et discutons quelques applications.

We investigate the average order of the divisor function at values of binary cubic forms that are reducible over and discuss some applications.

DOI : 10.5802/jtnb.778
Classification : 11N37, 11D25
Browning, Tim 1

1 School of Mathematics University of Bristol Bristol BS8 1TW United Kingdom
@article{JTNB_2011__23_3_579_0,
     author = {Browning, Tim},
     title = {The divisor problem for binary cubic forms},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {579--602},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {23},
     number = {3},
     year = {2011},
     doi = {10.5802/jtnb.778},
     zbl = {1271.11091},
     mrnumber = {2861076},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jtnb.778/}
}
TY  - JOUR
AU  - Browning, Tim
TI  - The divisor problem for binary cubic forms
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2011
SP  - 579
EP  - 602
VL  - 23
IS  - 3
PB  - Société Arithmétique de Bordeaux
UR  - https://www.numdam.org/articles/10.5802/jtnb.778/
DO  - 10.5802/jtnb.778
LA  - en
ID  - JTNB_2011__23_3_579_0
ER  - 
%0 Journal Article
%A Browning, Tim
%T The divisor problem for binary cubic forms
%J Journal de théorie des nombres de Bordeaux
%D 2011
%P 579-602
%V 23
%N 3
%I Société Arithmétique de Bordeaux
%U https://www.numdam.org/articles/10.5802/jtnb.778/
%R 10.5802/jtnb.778
%G en
%F JTNB_2011__23_3_579_0
Browning, Tim. The divisor problem for binary cubic forms. Journal de théorie des nombres de Bordeaux, Tome 23 (2011) no. 3, pp. 579-602. doi : 10.5802/jtnb.778. https://www.numdam.org/articles/10.5802/jtnb.778/

[1] V. V. Batyrev and Yu. I. Manin, Sur le nombre des points rationnels de hauteur borné des variétés algébriques. Math. Ann. 286 (1990), 27–43. | MR | Zbl

[2] R. de la Bretèche and T. D. Browning, Binary linear forms as sums of two squares. Compositio Math. 144 (2008), 1375–1402. | MR

[3] R. de la Bretèche and T. D. Browning, Le problème des diviseurs pour des formes binaires de degré 4. J. reine angew. Math. 646 (2010), 1–44. | MR | Zbl

[4] S. Daniel, On the divisor-sum problem for binary forms. J. reine angew. Math. 507 (1999), 107–129. | MR | Zbl

[5] W. Duke, J. B. Friedlander and H. Iwaniec, A quadratic divisor problem. Inventiones Math. 115 (1994), 209–217. | MR | Zbl

[6] T. Estermann, Über die Darstellung einer Zahl als Differenz von swei Produkten. J. reine angew. Math. 164 (1931), 173–182. | Zbl

[7] G. Greaves, On the divisor-sum problem for binary cubic forms. Acta Arith. 17 (1970), 1–28. | MR | Zbl

[8] A. E. Ingham, Some asymptotic formulae in the theory of numbers. J. London Math. Soc. 2 (1927), 202–208.

[9] Y. Motohashi, The binary additive divisor problem. Ann. Sci. École Norm. Sup. 27 (1994), 529–572. | Numdam | MR | Zbl

[10] M. Robbiani, On the number of rational points of bounded height on smooth bilinear hypersurfaces in biprojective space. J. London Math. Soc. 63 (2001), 33–51. | MR | Zbl

[11] C. V. Spencer, The Manin Conjecture for x0y0++xsys=0. J. Number Theory 129 (2009), 1505–1521. | MR | Zbl

  • Zhao, Xiaodong The Manin–Peyre conjecture for certain multiprojective hypersurfaces, International Journal of Number Theory, Volume 20 (2024) no. 05, p. 1265 | DOI:10.1142/s1793042124500623
  • Hou, Fei ON THE GENERAL TRIPLE CORRELATION SUMS FOR GL2×GL2×GL2, Rocky Mountain Journal of Mathematics, Volume 54 (2024) no. 6 | DOI:10.1216/rmj.2024.54.1655
  • Hou, Fei; LÜ, Guangshi Triple Correlation Sums of Coefficients of Maass Forms For SL4(ℤ), The Quarterly Journal of Mathematics, Volume 75 (2024) no. 3, p. 1123 | DOI:10.1093/qmath/haae036
  • McGrath, Oliver On the asymmetric additive energy of polynomials, Transactions of the American Mathematical Society (2024) | DOI:10.1090/tran/9144
  • Hou, Fei; Chen, Bin Triple correlation sums of coefficients of θ-series, AIMS Mathematics, Volume 8 (2023) no. 10, p. 25275 | DOI:10.3934/math.20231289
  • Lou, Miao Triple correlations of ternary divisor functions. II, International Journal of Number Theory, Volume 19 (2023) no. 07, p. 1525 | DOI:10.1142/s1793042123500744
  • Hou, Fei Triple correlation sums of coefficients of cuspidal forms, Journal of Number Theory, Volume 248 (2023), p. 172 | DOI:10.1016/j.jnt.2023.01.008
  • Hou, Fei; Chen, Bin On triple correlation sums of Fourier coefficients of cusp forms, AIMS Mathematics, Volume 7 (2022) no. 10, p. 19359 | DOI:10.3934/math.20221063
  • Lapkova, Kostadinka; Zhou, Nian Hong On the average sum of the kth divisor function over values of quadratic polynomials, The Ramanujan Journal, Volume 55 (2021) no. 3, p. 849 | DOI:10.1007/s11139-019-00240-2
  • Matthiesen, Lilian Linear correlations of multiplicative functions, Proceedings of the London Mathematical Society, Volume 121 (2020) no. 2, p. 372 | DOI:10.1112/plms.12309
  • Kumaraswamy, V. Counting integer points on quadrics with arithmetic weights, Transactions of the American Mathematical Society, Volume 373 (2020) no. 10, p. 6929 | DOI:10.1090/tran/8154
  • Lü, Guangshi; Xi, Ping On triple correlations of Fourier coefficients of cusp forms. II, International Journal of Number Theory, Volume 15 (2019) no. 04, p. 713 | DOI:10.1142/s1793042119500374
  • Lou, Miao; Lü, Guangshi Triple correlations of ternary divisor functions, Journal of Number Theory, Volume 198 (2019), p. 318 | DOI:10.1016/j.jnt.2018.10.016
  • Blomer, Valentin; Brüdern, Jörg Counting in hyperbolic spikes: The diophantine analysis of multihomogeneous diagonal equations, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2018 (2018) no. 737, p. 255 | DOI:10.1515/crelle-2015-0037
  • Lü, Guangshi; Xi, Ping On triple correlations of Fourier coefficients of cusp forms, Journal of Number Theory, Volume 183 (2018), p. 485 | DOI:10.1016/j.jnt.2017.08.028
  • Singh, Saurabh Kumar On double shifted convolution sum of SL(2,Z) Hecke eigenforms, Journal of Number Theory, Volume 191 (2018), p. 258 | DOI:10.1016/j.jnt.2018.03.008
  • Lin, Yongxiao Triple correlations of Fourier coefficients of cusp forms, The Ramanujan Journal, Volume 45 (2018) no. 3, p. 841 | DOI:10.1007/s11139-016-9874-1
  • Blomer, Valentin On triple correlations of divisor functions, Bulletin of the London Mathematical Society, Volume 49 (2017) no. 1, p. 10 | DOI:10.1112/blms.12004
  • Le Boudec, Pierre Density of Rational Points on a Certain Smooth Bihomogeneous Threefold, International Mathematics Research Notices, Volume 2015 (2015) no. 21, p. 10703 | DOI:10.1093/imrn/rnu255

Cité par 19 documents. Sources : Crossref