En utilisant le lien entre représentations galoisiennes et formes modulaires provenant de la Conjecture de Serre, nous calculons, pour tout premier
Using the link between Galois representations and modular forms established by Serre’s Conjecture, we compute, for every prime
@article{JTNB_2011__23_3_603_0, author = {Centeleghe, Tommaso Giorgio}, title = {Computing the number of certain {Galois} representations mod $p$}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {603--627}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {23}, number = {3}, year = {2011}, doi = {10.5802/jtnb.779}, zbl = {1261.11044}, mrnumber = {2861077}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jtnb.779/} }
TY - JOUR AU - Centeleghe, Tommaso Giorgio TI - Computing the number of certain Galois representations mod $p$ JO - Journal de théorie des nombres de Bordeaux PY - 2011 SP - 603 EP - 627 VL - 23 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://www.numdam.org/articles/10.5802/jtnb.779/ DO - 10.5802/jtnb.779 LA - en ID - JTNB_2011__23_3_603_0 ER -
%0 Journal Article %A Centeleghe, Tommaso Giorgio %T Computing the number of certain Galois representations mod $p$ %J Journal de théorie des nombres de Bordeaux %D 2011 %P 603-627 %V 23 %N 3 %I Société Arithmétique de Bordeaux %U https://www.numdam.org/articles/10.5802/jtnb.779/ %R 10.5802/jtnb.779 %G en %F JTNB_2011__23_3_603_0
Centeleghe, Tommaso Giorgio. Computing the number of certain Galois representations mod $p$. Journal de théorie des nombres de Bordeaux, Tome 23 (2011) no. 3, pp. 603-627. doi : 10.5802/jtnb.779. https://www.numdam.org/articles/10.5802/jtnb.779/
[1] M. F. Atiyah, I.G. Macdonald, Introduction to Commutative Algebra. Addison-Wesley, 1969. | MR | Zbl
[2] A. Ash, G. Stevens, Modular Forms in characteristic
[3] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The user language. J. Symbolic Comput. 24 (1997), 235–265. | MR | Zbl
[4] C. Citro, A. Ghitza, Enumerating Galois representations in Sage. Preprint available at http://arxiv.org/abs/1006.4084.
[5] B. Edixhoven, The weight in Serre’s conjecture on modular forms. Invent. Math. 109 (1992), 563–594. | EuDML | MR | Zbl
[6] B. Gross, A tameness criterion for Galois representations associated to modular forms (mod
[7] N. Jochnowitz, A study of the local components of the Hecke Algebra mod
[8] N. Jochnowitz, Congruences between systems of eigenvalues of modular forms. Trans. Amer. Math. Soc. 270 (1982), no.1, 269–285. | MR | Zbl
[9] N. Katz, p-adic properties of modular schemes and modular forms. Modular Functions of One Variable III, Lecture Notes in Math. 350, 69–190. Springer–Verlag, 1973. | MR | Zbl
[10] C. Khare, Modularity of Galois representations and motives with good reduction properties. J. Ramanujan Math. Soc. 22 (2007), No. 1, 1-26. | MR | Zbl
[11] C. Khare, Serre’s modularity conjecture: the level one case. Duke Math. J. 134 (2006), no.3, 557–589. | MR | Zbl
[12] S. Lang, Introduction to Modular Forms. Springer–Verlag, 1976. | MR | Zbl
[13] D.A. Marcus, Number Fields. Springer–Verlag, 1977. | MR | Zbl
[14] J.–P. Serre, Congruences et formes modulaires (d’après H.P.F. Swinnerton-Dyer). Sém. Bourbaki 1972/72, no. 416. | Numdam | MR | Zbl
[15] J.–P. Serre, Corps Locaux. Hermann, Quatrième édition, corrigée, 2004. | MR
[16] J.–P. Serre, A Course in Arithmetiic. Springer-Verlag, 1973. | MR | Zbl
[17] J.–P. Serre, Modular forms of weight one and Galois representations. Algebraic Number Fields, Edited by A. Fröhlich, 193–268. Acad. Press, 1977. | MR | Zbl
[18] G. Wiese, Dihedral Galois representations and Katz modular forms. Documenta Math. 9 (2004), 123–133. | MR | Zbl
Cité par Sources :