Using the link between Galois representations and modular forms established by Serre’s Conjecture, we compute, for every prime , a lower bound for the number of isomorphism classes of Galois representation of on a two–dimensional vector space over which are irreducible, odd, and unramified outside .
En utilisant le lien entre représentations galoisiennes et formes modulaires provenant de la Conjecture de Serre, nous calculons, pour tout premier , une borne pour le nombre de classes d’isomorphismes des représentations galoisiennes de sur un –espace vectoriel de dimension deux qui sont irréductibles, impaires, et non–ramifiées en dehors de .
@article{JTNB_2011__23_3_603_0, author = {Centeleghe, Tommaso Giorgio}, title = {Computing the number of certain {Galois} representations mod $p$}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {603--627}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {23}, number = {3}, year = {2011}, doi = {10.5802/jtnb.779}, zbl = {1261.11044}, mrnumber = {2861077}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.779/} }
TY - JOUR AU - Centeleghe, Tommaso Giorgio TI - Computing the number of certain Galois representations mod $p$ JO - Journal de théorie des nombres de Bordeaux PY - 2011 SP - 603 EP - 627 VL - 23 IS - 3 PB - Société Arithmétique de Bordeaux UR - http://archive.numdam.org/articles/10.5802/jtnb.779/ DO - 10.5802/jtnb.779 LA - en ID - JTNB_2011__23_3_603_0 ER -
%0 Journal Article %A Centeleghe, Tommaso Giorgio %T Computing the number of certain Galois representations mod $p$ %J Journal de théorie des nombres de Bordeaux %D 2011 %P 603-627 %V 23 %N 3 %I Société Arithmétique de Bordeaux %U http://archive.numdam.org/articles/10.5802/jtnb.779/ %R 10.5802/jtnb.779 %G en %F JTNB_2011__23_3_603_0
Centeleghe, Tommaso Giorgio. Computing the number of certain Galois representations mod $p$. Journal de théorie des nombres de Bordeaux, Volume 23 (2011) no. 3, pp. 603-627. doi : 10.5802/jtnb.779. http://archive.numdam.org/articles/10.5802/jtnb.779/
[1] M. F. Atiyah, I.G. Macdonald, Introduction to Commutative Algebra. Addison-Wesley, 1969. | MR | Zbl
[2] A. Ash, G. Stevens, Modular Forms in characteristic and special values of their -functions. Duke Math. J. 53 (1986), no.3, 849–868. | MR | Zbl
[3] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The user language. J. Symbolic Comput. 24 (1997), 235–265. | MR | Zbl
[4] C. Citro, A. Ghitza, Enumerating Galois representations in Sage. Preprint available at http://arxiv.org/abs/1006.4084.
[5] B. Edixhoven, The weight in Serre’s conjecture on modular forms. Invent. Math. 109 (1992), 563–594. | EuDML | MR | Zbl
[6] B. Gross, A tameness criterion for Galois representations associated to modular forms (mod ). Duke Math. J. 61 (1990), no. 2, 445–517. | MR | Zbl
[7] N. Jochnowitz, A study of the local components of the Hecke Algebra mod . Trans. Amer. Math. Soc. 270 (1982), no.1, 253–267. | MR | Zbl
[8] N. Jochnowitz, Congruences between systems of eigenvalues of modular forms. Trans. Amer. Math. Soc. 270 (1982), no.1, 269–285. | MR | Zbl
[9] N. Katz, p-adic properties of modular schemes and modular forms. Modular Functions of One Variable III, Lecture Notes in Math. 350, 69–190. Springer–Verlag, 1973. | MR | Zbl
[10] C. Khare, Modularity of Galois representations and motives with good reduction properties. J. Ramanujan Math. Soc. 22 (2007), No. 1, 1-26. | MR | Zbl
[11] C. Khare, Serre’s modularity conjecture: the level one case. Duke Math. J. 134 (2006), no.3, 557–589. | MR | Zbl
[12] S. Lang, Introduction to Modular Forms. Springer–Verlag, 1976. | MR | Zbl
[13] D.A. Marcus, Number Fields. Springer–Verlag, 1977. | MR | Zbl
[14] J.–P. Serre, Congruences et formes modulaires (d’après H.P.F. Swinnerton-Dyer). Sém. Bourbaki 1972/72, no. 416. | Numdam | MR | Zbl
[15] J.–P. Serre, Corps Locaux. Hermann, Quatrième édition, corrigée, 2004. | MR
[16] J.–P. Serre, A Course in Arithmetiic. Springer-Verlag, 1973. | MR | Zbl
[17] J.–P. Serre, Modular forms of weight one and Galois representations. Algebraic Number Fields, Edited by A. Fröhlich, 193–268. Acad. Press, 1977. | MR | Zbl
[18] G. Wiese, Dihedral Galois representations and Katz modular forms. Documenta Math. 9 (2004), 123–133. | MR | Zbl
Cited by Sources: