Real and complex transversely symplectic Anosov flows of dimension five
Séminaire de théorie spectrale et géométrie, Volume 23 (2004-2005), pp. 105-114.

Nous présentons plusieurs résultats de rigidité concernant les flots d’Anosov admettant transversalement des structures symplectiques réelles ou complexes de dimension 5.

We present several rigidity results about five-dimensional real or complex transversely symplectic Anosov flows.

DOI: 10.5802/tsg.232
Classification: 37D40,  53C25
@article{TSG_2004-2005__23__105_0,
     author = {Fang, Yong},
     title = {Real and complex transversely symplectic {Anosov} flows of dimension five},
     journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
     pages = {105--114},
     publisher = {Institut Fourier},
     volume = {23},
     year = {2004-2005},
     doi = {10.5802/tsg.232},
     mrnumber = {2270224},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/tsg.232/}
}
TY  - JOUR
AU  - Fang, Yong
TI  - Real and complex transversely symplectic Anosov flows of dimension five
JO  - Séminaire de théorie spectrale et géométrie
PY  - 2004-2005
DA  - 2004-2005///
SP  - 105
EP  - 114
VL  - 23
PB  - Institut Fourier
UR  - http://archive.numdam.org/articles/10.5802/tsg.232/
UR  - https://www.ams.org/mathscinet-getitem?mr=2270224
UR  - https://doi.org/10.5802/tsg.232
DO  - 10.5802/tsg.232
LA  - en
ID  - TSG_2004-2005__23__105_0
ER  - 
%0 Journal Article
%A Fang, Yong
%T Real and complex transversely symplectic Anosov flows of dimension five
%J Séminaire de théorie spectrale et géométrie
%D 2004-2005
%P 105-114
%V 23
%I Institut Fourier
%U https://doi.org/10.5802/tsg.232
%R 10.5802/tsg.232
%G en
%F TSG_2004-2005__23__105_0
Fang, Yong. Real and complex transversely symplectic Anosov flows of dimension five. Séminaire de théorie spectrale et géométrie, Volume 23 (2004-2005), pp. 105-114. doi : 10.5802/tsg.232. http://archive.numdam.org/articles/10.5802/tsg.232/

[B] M. Brunella, On transversely holomorphic flows I, Invent. Math., 126 (1996), 265–279. | MR | Zbl

[BFL] Y. Benoist, P. Foulon and F. Labourie, Flots d’Anosov à distributions de Liapounov différentiables. I, Ann. Inst. Henri Poincaré, 53 (1990), 395–412. | Numdam | Zbl

[BFL1] Y. Benoist, P. Foulon and F. Labourie, Flots d’Anosov à distributions stable et instable différentiables, J. Amer. Math. Soc., 5 (1992), 33–74. | Zbl

[CIPP] G. Contreras, R. Iturriaga, G. P. Paternain and M. Paternain, Lagrangian graphs, minimizing measures and Mané’s critical values, GAFA, 8 (1998) 788–809. | Zbl

[D] S. Dumitrescu, Métriques riemanniennes holomorphesen petite dimension, Ann. Inst. Fourier, 51, 6 (2001), 1663–1690. | Numdam | MR | Zbl

[F] Y. Fang, Structures géométriques rigides et systèmes dynamiques hyperboliques, ph.D. thesis, University of Paris-Sud. Web address: http://tel.archives-ouvertes.fr/tel-00008734/fr/

[F1] Y. Fang, Geometric Anosov flows of dimension 5 with smooth distributions, to appear in Journal of the Institute of Mathematics of Jussieu. Web address: http://hal.ccsd.cnrs.fr/ccsd-00004411 | MR | Zbl

[F2] Y. Fang, Smooth rigidity of uniformly quasiconformal Anosov flows, Ergod. Th. and Dynam. Sys, 24 (2004), 1937–1959. | MR | Zbl

[F3] Y. Fang, On orbit equivalence of quasiconformal Anosov flows, soumitted. Web address: http://hal.ccsd.cnrs.fr/ccsd-00004412

[FK] R. Feres and A. Katok, invariant tensor fields of dynamical systems with pinched Lyapunov exponents and rigidity of geodesic flows, Ergod. Th. and Dynam. Sys., 9 (1989), 427–432. | MR | Zbl

[G] É. Ghys, Flots d’Anosov dont les feuilletages stables sont différentiables, Ann. Scient. Éc. Norm. Sup. (4), 20 (1987), 251–270. | Numdam | Zbl

[G1] É. Ghys, Holomorphic Anosov flows, Invent. math., 119 (1995), 585–614. | MR | Zbl

[G2] É. Ghys, On transversely holomorphic flows II, Invent. Math., 126 (1996) 281–286. | MR | Zbl

[HK] B. Hasselblatt and A. Katok, Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, vol 54, 1995. | MR | Zbl

[HuK] S. Hurder and A. Katok, Differentiability, rigidity and Godbillon-Vey classes for Anosov flows, Pub. I.H.É.S., 72 (1990), 5–61. | Numdam | MR | Zbl

[IKO] M. Inoue, S. Kobayashi and T. Ochiai, Holomorphic affine connections on compact complex surfaces, J. Fac. Sci. Univ. Tokyo, 27(2) (1980), 247-264. | MR | Zbl

[K] M. Kanai, Geodesic flows of negatively curved manifolds with smooth stable and instable foliations, Ergod. Th. and Dynam. Sys., 8 (1988), 215–240. | MR | Zbl

[S] V. Sadovskaya, On uniformly quasiconformal Anosov systems, nto appear in Math. Res. Lett. | MR | Zbl

Cited by Sources: