Combinatoire du billard dans un polyèdre
Séminaire de théorie spectrale et géométrie, Volume 25 (2006-2007), pp. 1-15.

Ces notes ont pour but de rassembler les différents résultats de combinatoire des mots relatifs au billard polygonal et polyédral. On commence par rappeler quelques notions de combinatoire, puis on définit le billard, les notions utiles en dynamique et le codage de l’application. On énonce alors les résultats connus en dimension deux puis trois.

DOI: 10.5802/tsg.243
Classification: 37A35, 37C35, 05A16, 11N37, 28D
Keywords: théorie ergodique, dynamique symbolique, billard, isometries par morceaux
Bedaride, Nicolas  1

1 Fédération de recherches des unités de mathématiques de Marseille Laboratoire d’Analyse Topologie et Probabilités - UMR 6632 Avenue Escadrille Normandie Niemen 13397 Marseille cedex 20 (France)
@article{TSG_2006-2007__25__1_0,
     author = {Bedaride, Nicolas },
     title = {Combinatoire du billard dans un poly\`edre},
     journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
     pages = {1--15},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {25},
     year = {2006-2007},
     doi = {10.5802/tsg.243},
     zbl = {1166.37003},
     mrnumber = {2478804},
     language = {fr},
     url = {http://archive.numdam.org/articles/10.5802/tsg.243/}
}
TY  - JOUR
AU  - Bedaride, Nicolas 
TI  - Combinatoire du billard dans un polyèdre
JO  - Séminaire de théorie spectrale et géométrie
PY  - 2006-2007
SP  - 1
EP  - 15
VL  - 25
PB  - Institut Fourier
PP  - Grenoble
UR  - http://archive.numdam.org/articles/10.5802/tsg.243/
DO  - 10.5802/tsg.243
LA  - fr
ID  - TSG_2006-2007__25__1_0
ER  - 
%0 Journal Article
%A Bedaride, Nicolas 
%T Combinatoire du billard dans un polyèdre
%J Séminaire de théorie spectrale et géométrie
%D 2006-2007
%P 1-15
%V 25
%I Institut Fourier
%C Grenoble
%U http://archive.numdam.org/articles/10.5802/tsg.243/
%R 10.5802/tsg.243
%G fr
%F TSG_2006-2007__25__1_0
Bedaride, Nicolas . Combinatoire du billard dans un polyèdre. Séminaire de théorie spectrale et géométrie, Volume 25 (2006-2007), pp. 1-15. doi : 10.5802/tsg.243. http://archive.numdam.org/articles/10.5802/tsg.243/

[1] Arnoux, P.; Mauduit, C.; Shiokawa, I.; Tamura, J. Complexity of sequences defined by billiard in the cube, Bull. Soc. Math. France, Volume 122 (1994) no. 1, pp. 1-12 | Numdam | MR | Zbl

[2] Baryshnikov, Yu. Complexity of trajectories in rectangular billiards, Comm. Math. Phys., Volume 174 (1995) no. 1, pp. 43-56 | MR | Zbl

[3] Bedaride, N. Billiard complexity in rational polyhedra, Regul. Chaotic Dyn., Volume 8 (2003) no. 1, pp. 97-104 | MR | Zbl

[4] Bedaride, N. Classification of cubic billiard trajectories (2007) (to appear in Theoretical computer sciences)

[5] Bedaride, N. Entropy of polyhedral billiard (2007) (to appear in Discrete and continuous dynamical systems) | MR

[6] Bedaride, N.; Hubert, P. Billiard complexity in the cube (2007) (to appear in Annales de l’institut Fourier) | Numdam

[7] Berstel, J.; Pocchiola, M. A geometric proof of the enumeration formula for Sturmian words, Internat. J. Algebra Comput., Volume 3 (1993) no. 3, pp. 349-355 | MR | Zbl

[8] Buzzi, J. Piecewise isometries have zero topological entropy, Ergodic Theory Dynam. Systems, Volume 21 (2001) no. 5, pp. 1371-1377 | MR | Zbl

[9] Cassaigne, J. Complexité et facteurs spéciaux, Bull. Belg. Math. Soc. Simon Stevin, Volume 4 (1997) no. 1, pp. 67-88 Journées Montoises (Mons, 1994) | MR | Zbl

[10] Cassaigne, J.; Hubert, P.; Troubetzkoy, S. Complexity and growth for polygonal billiards, Ann. Inst. Fourier (Grenoble), Volume 52 (2002) no. 3, pp. 835-847 | Numdam | MR | Zbl

[11] Ferenczi, Sébastien; Holton, Charles; Zamboni, Luca Q. Structure of three-interval exchange transformations III : ergodic and spectral properties, J. Anal. Math., Volume 93 (2004), pp. 103-138 | MR | Zbl

[12] Fogg, Pytheas Substitutions in dynamics, arithmetics and combinatorics, Lecture Notes in Mathematics, 1794, Springer-Verlag, Berlin, 2002 (Edited by V. Berthé, S. Ferenczi, C. Mauduit and A. Siegel) | MR | Zbl

[13] Galʼperin, G.; Krüger, T.; Troubetzkoy, S. Local instability of orbits in polygonal and polyhedral billiards, Comm. Math. Phys., Volume 169 (1995) no. 3, pp. 463-473 | MR | Zbl

[14] Goetz, Arek; Poggiaspalla, Guillaume Rotations by π/7, Nonlinearity, Volume 17 (2004) no. 5, pp. 1787-1802 | MR | Zbl

[15] Gutkin, E.; Haydn, N. Topological entropy of polygon exchange transformations and polygonal billiards, Ergodic Theory Dynam. Systems, Volume 17 (1997) no. 4, pp. 849-867 | MR | Zbl

[16] Hardy, G. H.; Wright, E. M. An introduction to the theory of numbers, The Clarendon Press Oxford University Press, New York, 1979 | MR | Zbl

[17] Hubert, P. Complexité de suites définies par des billards rationnels, Bull. Soc. Math. France, Volume 123 (1995) no. 2, pp. 257-270 | Numdam | MR | Zbl

[18] Katok, A. The growth rate for the number of singular and periodic orbits for a polygonal billiard, Comm. Math. Phys., Volume 111 (1987) no. 1, pp. 151-160 | MR | Zbl

[19] Lipatov, E. P. A classification of binary collections and properties of homogeneity classes, Problemy Kibernet. (1982) no. 39, pp. 67-84 | MR | Zbl

[20] Mignosi, F. On the number of factors of Sturmian words, Theoret. Comput. Sci., Volume 82 (1991) no. 1, Algorithms Automat. Complexity Games, pp. 71-84 | MR | Zbl

[21] Morse, M.; Hedlund, G. A. Symbolic dynamics II. Sturmian trajectories, Amer. J. Math., Volume 62 (1940), pp. 1-42 | MR

[22] Rauzy, Gérard Échanges d’intervalles et transformations induites, Acta Arith., Volume 34 (1979) no. 4, pp. 315-328 | Zbl

[23] Tarannikov, Yu. V. On the number of ordered pairs of l-balanced sets of length n, Diskret. Mat., Volume 7 (1995) no. 3, pp. 146-156 | MR | Zbl

[24] Troubetzkoy, S. Complexity lower bounds for polygonal billiards, Chaos, Volume 8 (1998) no. 1, pp. 242-244 | MR | Zbl

Cited by Sources: