Ces notes ont pour but de rassembler les différents résultats de combinatoire des mots relatifs au billard polygonal et polyédral. On commence par rappeler quelques notions de combinatoire, puis on définit le billard, les notions utiles en dynamique et le codage de l’application. On énonce alors les résultats connus en dimension deux puis trois.
Keywords: théorie ergodique, dynamique symbolique, billard, isometries par morceaux
@article{TSG_2006-2007__25__1_0, author = {Bedaride, Nicolas }, title = {Combinatoire du billard dans un poly\`edre}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {1--15}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {25}, year = {2006-2007}, doi = {10.5802/tsg.243}, zbl = {1166.37003}, mrnumber = {2478804}, language = {fr}, url = {http://archive.numdam.org/articles/10.5802/tsg.243/} }
TY - JOUR AU - Bedaride, Nicolas TI - Combinatoire du billard dans un polyèdre JO - Séminaire de théorie spectrale et géométrie PY - 2006-2007 SP - 1 EP - 15 VL - 25 PB - Institut Fourier PP - Grenoble UR - http://archive.numdam.org/articles/10.5802/tsg.243/ DO - 10.5802/tsg.243 LA - fr ID - TSG_2006-2007__25__1_0 ER -
Bedaride, Nicolas . Combinatoire du billard dans un polyèdre. Séminaire de théorie spectrale et géométrie, Volume 25 (2006-2007), pp. 1-15. doi : 10.5802/tsg.243. http://archive.numdam.org/articles/10.5802/tsg.243/
[1] Complexity of sequences defined by billiard in the cube, Bull. Soc. Math. France, Volume 122 (1994) no. 1, pp. 1-12 | Numdam | MR | Zbl
[2] Complexity of trajectories in rectangular billiards, Comm. Math. Phys., Volume 174 (1995) no. 1, pp. 43-56 | MR | Zbl
[3] Billiard complexity in rational polyhedra, Regul. Chaotic Dyn., Volume 8 (2003) no. 1, pp. 97-104 | MR | Zbl
[4] Classification of cubic billiard trajectories (2007) (to appear in Theoretical computer sciences)
[5] Entropy of polyhedral billiard (2007) (to appear in Discrete and continuous dynamical systems) | MR
[6] Billiard complexity in the cube (2007) (to appear in Annales de l’institut Fourier) | Numdam
[7] A geometric proof of the enumeration formula for Sturmian words, Internat. J. Algebra Comput., Volume 3 (1993) no. 3, pp. 349-355 | MR | Zbl
[8] Piecewise isometries have zero topological entropy, Ergodic Theory Dynam. Systems, Volume 21 (2001) no. 5, pp. 1371-1377 | MR | Zbl
[9] Complexité et facteurs spéciaux, Bull. Belg. Math. Soc. Simon Stevin, Volume 4 (1997) no. 1, pp. 67-88 Journées Montoises (Mons, 1994) | MR | Zbl
[10] Complexity and growth for polygonal billiards, Ann. Inst. Fourier (Grenoble), Volume 52 (2002) no. 3, pp. 835-847 | Numdam | MR | Zbl
[11] Structure of three-interval exchange transformations III : ergodic and spectral properties, J. Anal. Math., Volume 93 (2004), pp. 103-138 | MR | Zbl
[12] Substitutions in dynamics, arithmetics and combinatorics, Lecture Notes in Mathematics, 1794, Springer-Verlag, Berlin, 2002 (Edited by V. Berthé, S. Ferenczi, C. Mauduit and A. Siegel) | MR | Zbl
[13] Local instability of orbits in polygonal and polyhedral billiards, Comm. Math. Phys., Volume 169 (1995) no. 3, pp. 463-473 | MR | Zbl
[14] Rotations by , Nonlinearity, Volume 17 (2004) no. 5, pp. 1787-1802 | MR | Zbl
[15] Topological entropy of polygon exchange transformations and polygonal billiards, Ergodic Theory Dynam. Systems, Volume 17 (1997) no. 4, pp. 849-867 | MR | Zbl
[16] An introduction to the theory of numbers, The Clarendon Press Oxford University Press, New York, 1979 | MR | Zbl
[17] Complexité de suites définies par des billards rationnels, Bull. Soc. Math. France, Volume 123 (1995) no. 2, pp. 257-270 | Numdam | MR | Zbl
[18] The growth rate for the number of singular and periodic orbits for a polygonal billiard, Comm. Math. Phys., Volume 111 (1987) no. 1, pp. 151-160 | MR | Zbl
[19] A classification of binary collections and properties of homogeneity classes, Problemy Kibernet. (1982) no. 39, pp. 67-84 | MR | Zbl
[20] On the number of factors of Sturmian words, Theoret. Comput. Sci., Volume 82 (1991) no. 1, Algorithms Automat. Complexity Games, pp. 71-84 | MR | Zbl
[21] Symbolic dynamics II. Sturmian trajectories, Amer. J. Math., Volume 62 (1940), pp. 1-42 | MR
[22] Échanges d’intervalles et transformations induites, Acta Arith., Volume 34 (1979) no. 4, pp. 315-328 | Zbl
[23] On the number of ordered pairs of -balanced sets of length , Diskret. Mat., Volume 7 (1995) no. 3, pp. 146-156 | MR | Zbl
[24] Complexity lower bounds for polygonal billiards, Chaos, Volume 8 (1998) no. 1, pp. 242-244 | MR | Zbl
Cited by Sources: