@incollection{AST_1980__75-76__141_0, author = {Jakubczyk, Bronislaw}, title = {Existence and uniqueness of nonlinear realizations}, booktitle = {Analyse des syst\`emes}, series = {Ast\'erisque}, pages = {141--147}, publisher = {Soci\'et\'e math\'ematique de France}, number = {75-76}, year = {1980}, mrnumber = {581711}, zbl = {0459.93018}, language = {en}, url = {http://archive.numdam.org/item/AST_1980__75-76__141_0/} }
TY - CHAP AU - Jakubczyk, Bronislaw TI - Existence and uniqueness of nonlinear realizations BT - Analyse des systèmes AU - Collectif T3 - Astérisque PY - 1980 SP - 141 EP - 147 IS - 75-76 PB - Société mathématique de France UR - http://archive.numdam.org/item/AST_1980__75-76__141_0/ LA - en ID - AST_1980__75-76__141_0 ER -
Jakubczyk, Bronislaw. Existence and uniqueness of nonlinear realizations, in Analyse des systèmes, Astérisque, no. 75-76 (1980), pp. 141-147. http://archive.numdam.org/item/AST_1980__75-76__141_0/
[1] Volterra series and geometric control theory. Automatica 12 (1976), 167-176. | DOI | MR | Zbl
.-[2] Realizations of stationary finite Volterra series. These proceedings.
. -[3] Realization and structure theory of bilinear dynamical systems. SIAM J. Control, Vol.12, n°3 (1974). | DOI | MR | Zbl
, , . -[4] Nonlinear controllability and observability. IEEE Trans. Automatic Control, Vol.22, n°5 (1977). | DOI | MR | Zbl
, .-[5] Existence and uniqueness of realizations of nonlinear systems. Preprint, Warszawa 1978.
. -[6] Topics in Mathematical System Theory. New-York 1969. | MR | Zbl
, , . -[7] Dynamical polysystems and control theory. In "Geometric methods", Proc. Conf. London 1973. | Zbl
.-[8] Minimal realizations of nonlinear systems. In "Geometric methods", Proc. Conf. London 1973. | Zbl
.-[9] Orbits of families of vector fields and integrability of distributions. Trans. Am. Math. Soc. 180 (1973), 171-188. | DOI | MR | Zbl
. -[10] Existence and uniqueness of minimal realizations of nonlinear systems. Math. Syst. Theory 10 (1977), 263-284. | DOI | MR | Zbl
. -[11] A generalization of closed subgroup theorem to quotients of arbitrary manifolds. J. Diff. Geom. 10 (1975), 151-166. | DOI | MR | Zbl
. -