@article{AFST_2000_6_9_2_305_0, author = {Ledoux, Michel}, title = {The geometry of {Markov} diffusion generators}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {305--366}, publisher = {Universit\'e Paul Sabatier. Facult\'e des sciences}, address = {Toulouse}, volume = {Ser. 6, 9}, number = {2}, year = {2000}, mrnumber = {1813804}, zbl = {0980.60097}, language = {en}, url = {http://archive.numdam.org/item/AFST_2000_6_9_2_305_0/} }
TY - JOUR AU - Ledoux, Michel TI - The geometry of Markov diffusion generators JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2000 SP - 305 EP - 366 VL - 9 IS - 2 PB - Université Paul Sabatier. Faculté des sciences PP - Toulouse UR - http://archive.numdam.org/item/AFST_2000_6_9_2_305_0/ LA - en ID - AFST_2000_6_9_2_305_0 ER -
%0 Journal Article %A Ledoux, Michel %T The geometry of Markov diffusion generators %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2000 %P 305-366 %V 9 %N 2 %I Université Paul Sabatier. Faculté des sciences %C Toulouse %U http://archive.numdam.org/item/AFST_2000_6_9_2_305_0/ %G en %F AFST_2000_6_9_2_305_0
Ledoux, Michel. The geometry of Markov diffusion generators. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 9 (2000) no. 2, pp. 305-366. http://archive.numdam.org/item/AFST_2000_6_9_2_305_0/
[Au] Nonlinear analysis on manifolds. Monge-Ampère equations. Springer (1982). | MR | Zbl
). -[Ba1] Transformations de Riesz pour les semigroupes symétriques. Séminaire de Probabilités XIX. Lecture Notes in Math. 1123, 2130-174 (1985). Springer. | Numdam | Zbl
). -[Ba2] Inégalités de Sobolev faibles : un critère Γ2. Séminaire de Probabilités XXV. Lecture Notes in Math. 1485, 234-261 (1991). Springer. | Numdam | MR | Zbl
). -[Ba3] L'hypercontractivité et son utilisation en théorie des semigroupes. Ecole d'Eté de Probabilités de St-Flour. Lecture Notes in Math. 1581, 1-114 (1994). Springer. | MR | Zbl
). -[Ba4] On Sobolev and logarithmic Sobolev inequalities for Markov semigroups. New trends in Stochastic Analysis. 43-75 (1997). World Scientific | MR
). -[Ba-E] Diffusions hypercontractives. Séminaire de Probabilités XIX. Lecture Notes in Math. 1123, 177-206 (1985). Springer. | Numdam | MR | Zbl
), ). -[B-C-L] Optimal heat kernel bounds under logarithmic Sobolev inequalities. ESAIM: Probability and Statistics 1, 391-407 (1997). | Numdam | MR | Zbl
), ), ). -[B-C-L-SC] Sobolev inequalities in disguise. Indiana J. Math. 44, 1033-1074 (1995). | MR | Zbl
), ), ), ). -[B-L1] Sobolev inequalities and Myers's diameter theorem for an abstract Markov generator. Duke Math. J. 85, 253-270 (1996). | MR | Zbl
), ). -[B-L2] Lévy-Gromov's isoperimetric inequality for an infinite dimensional diffusion generator. Invent. math. 123, 259-281 (1996). | MR | Zbl
), ). -[B-L-Q]
), ), ). - Preprint (1997).[B-Q] Comparison theorem for spectral gap via dimension, diameter and Ricci curvature. Preprint (1998).
), ). -[Be1] Sobolev inequalities, the Poisson semigroup and analysis on the sphere Sn. Proc. Nat. Acad. Sci. 89, 4816-4819 (1992). | MR | Zbl
). -[Be2] Personal communication (1998).
). -[Bé] Spectral geometry: Direct and inverse problems. Lecture Notes in Math. 1207 (1986). Springer. | MR | Zbl
). -[BV-V] Nonlinear elliptic equations on compact manifolds and asymptotics of Emden equations. Invent. math. 106, 489-539 (1991). | MR | Zbl
), ). -[Bob] An isoperimetric inequality on the discrete cube and an elementary proof of the isoperimetric inequality in Gauss space. Ann. Probability 25, 206-214 (1997). | MR | Zbl
). -[B-H] Some connections between Sobolev-type inequalities and isoperimetry. Memoirs of the A.M.S. 616 (1997). | MR | Zbl
), ). -[Bor] The Brunn-Minkowski inequality in Gauss space. Invent. math. 30, 207-216 (1975). | MR | Zbl
). -[B-Z] Geometric inequalities. Springer (1988). First Edition (russian): Nauka (1980). | MR | Zbl
), ). -[Ca] Superadditivity of Fisher's information and logarithmic Sobolev inequalities. J. Funct. Anal. 101, 194-211 (1991). | MR | Zbl
). -[C-L] Sharp constant in Nash's inequality. Duke Math. J., International Math. Research Notices 7, 213-215 (1993). | MR | Zbl
), ). -[C-K-S] Upperbounds for symmetric Markov transition functions. Ann. Inst. H. Poincaré 23, 245-287 (1987). | Numdam | MR | Zbl
), ), ). -[Cha1] Eigenvalues in Riemannian geometry. Academic Press (1984). | MR | Zbl
). -[Cha2] Riemannian geometry - A modern introduction. Cambridge Univ. Press (1993). | MR | Zbl
). -[Ch] The relation between the Laplacian and the diameter for manifolds of non-negative curvature. Arch. der Math. 19, 558-560 (1968). | MR | Zbl
). -[Che] Eigenvalue comparison theorems and its geometric applications. Math. Z. 143, 289-297 (1975). | MR | Zbl
). -[Da] Heat kernel and spectral theory. Cambridge Univ. Press (1989). | MR | Zbl
). -[D-S] Large deviations. Academic Press (1989). | MR | Zbl
), ). -[Dr] Optimal Sobolev inequalities of arbitrary order on compact Riemannian manifolds (1998). J. Funct. Anal. 159, 217-242 (1998). | MR | Zbl
). -[D-H-V] Optimal Nash's inequalities on Riemannian manifolds: the influence of geometry. International Math. Research Notices 14, 735-779 (1999). | MR | Zbl
), ), ). -[Eh] Symétrisation dans l'espace de Gauss. Math. Scand. 53, 281-301 (1983). | MR | Zbl
). -[F-L-M] The dimensions of almost spherical sections of convex bodies. Acta Math. 139, 52-94 (1977). | MR | Zbl
), ), ). -[Fo] Sur les constantes de Sobolev des variétés riemanniennes compactes et les fonctions extrémales des sphères. Bull. Sci. math. 121, 71-96 (1997). | MR | Zbl
). -[G-H-L] Riemannian Geometry. Second Edition. Springer (1990). | MR | Zbl
), ), ). -[Gro] Paul Lévy's isoperimetric inequality. Preprint I.H.E.S. (1980).
). -[G-M] A topological application of the isoperimetric inequality. Amer. J. Math. 105, 843-854 (1983). | MR | Zbl
), ). -[Gr1] Logarithmic Sobolev inequalities. Amer. J. Math. 97, 1061-1083 (1975). | MR | Zbl
). -[Gr2] Logarithmic Sobolev inequalities and contractive properties of semigroups. Dirichlet Forms, Varenna 1992. Lect. Notes in Math. 1563, 54-88 (1993). Springer. | MR | Zbl
). -[He1] Sobolev spaces on Riemannian manifolds. Lecture Notes in Math. 1635. Springer (1996). | MR | Zbl
). -[He2] Nonlinear analysis on manifolds: Sobolev spaces and inequalities. CIMS Lecture Notes (1999). Courant Institute of Mathematical Sciences. | MR | Zbl
). -[Il] Constantes explicites pour les inégalités de Sobolev sur les variétés riemanniennnes compactes. Ann. Inst. Fourier 33, Fasc. 2, 151-165 (1983). | Numdam | MR | Zbl
). -[Kr] On the spectral gap for compact manifolds. J. Differential Geometry 36, 315-330 (1992). | MR | Zbl
). -[L-O] Between Sobolev and Poincaré (1999). Geometric and Funct. Anal., to appear. | MR | Zbl
), ). -[Le1] L'algèbre de Lie des gradients itérés d'un générateur markovien - Développements de moyennes et entropies. Ann. scient. Éc. Norm. Sup. 28, 435-460 (1995). | Numdam | MR | Zbl
). -[Le2] Isoperimetry and Gaussian Analysis. Ecole d'Eté de Probabilités de St-Flour 1994. Lecture Notes in Math. 1648, 165-294 (1996). Springer. | MR | Zbl
). -[Le3] On manifolds with non-negative Ricci curvature and Sobolev inequalities. Comm. in Analysis and Geometry 7, 347-353 (1999). | MR | Zbl
). -[Le4] Concentration of measure and logarithmic Sobolev inequalities. Séminaire de Probabilités XXXIII. Lecture Notes in Math. 1709, 120-216 (1999). Springer. | Numdam | MR | Zbl
). -[Lé] Problèmes concrets d'analyse fonctionnelle. Gauthier-Villars (1951). | MR | Zbl
). -[Li1] A lower bound for the first eigenvalue of the Laplacian on a compact manifold. Indiana Univ. Math. J. 28, 1013-1019 (1979). | MR | Zbl
). -[Li2] Large time behavior of the heat equation on complete manifolds with non-negative Ricci curvature. Ann. Math. 124, 1-21 (1986). | MR | Zbl
). -[L-Y] On the parabolic kernel of the Schrödinger operator. Acta Math. 156, 153-201 (1986). | MR | Zbl
), ). -[Lie] Gaussian kernels have only Gaussian maximizers. Invent. math. 102, 179-208 (1990). | MR | Zbl
). -[MK] Geometry of differential space. Ann. Probability 1, 197-206 (1973). | MR | Zbl
). -[Ma] Classification des semigroupes de diffusion sur Rn associés à une famille de polynômes orthogonaux. Séminaire de Probabilités XXXI. Lecture Notes in Math. 1655, 40-53 (1997). Springer. | Numdam | MR | Zbl
). -[Mo] A Harnack inequality for parabolic differential equations. Comm. Pure Appl. Math. 17, 101-134 (1964). | MR | Zbl
). -[M-W] Hypercontractivity of the heat semigroup for ultraspherical polynomials and on the n-sphere. J. Funct. Anal. 48, 252-283 (1982). | MR | Zbl
), ). -[My] Connections between differential geometry and topology. Duke Math. J. 1, 376-391 (1935). | JFM | Zbl
). -[Na] Continuity of solutions of parabolic and elliptic equations. Amer. J. Math. 80, 931-954 (1958). | MR | Zbl
). -[Ob] Certain conditions for a Riemannian manifold to be isometric with a sphere. J. Math. Soc. Japan 14, 333-340 (1962). | MR | Zbl
). -[Os] The isoperimetric inequality. Bull. Amer. Math. Soc. 84, 1182-1238 (1978). | MR | Zbl
). -[Ro1] Diffusion on compact Riemannian manifolds and logarithmic Sobolev inequalities. J. Funct. Anal. 42, 358-367 (1981). | MR | Zbl
). -[Ro2] Hypercontractivity and the Bakry-Emery criterion for compact Lie groups. J. Funct. Anal. 65, 358-367 (1986). | MR | Zbl
). -[SC] Convergence to equilibrium and logarithmic Sobolev constant on manifolds with Ricci curvature bounded below. Colloquium Math. 67, 109-121 (1994). | MR | Zbl
). -[Sc] Die Brunn-Minkowskische Ungleichung und ihr Spiegelbild sowie die isoperime- trische Eigenschaft der Kugel in der euklidischen und nichteuklidischen Geometrie. Math. Nach. 1, 81-157 (1948). | MR | Zbl
). -[So] On a theorem in functional analysis. Amer. Math. Soc. Translations (2) 34, 39-68 (1963); translated from Mat. Sb. (N.S.) 4 (46), 471-497 (1938). | MR | Zbl
). -[S-T] Extremal properties of half-spaces for spherically invariant measures. J. Soviet. Math. 9, 9-18 (1978); translated from Zap. Nauch. Sem. L.O.M.I. 41, 14-24 (1974). | MR | Zbl
), ). -[Ta] Best constants in Sobolev inequality. Ann. di Matem. Pura ed Appl. 110, 353-372 (1976). | MR | Zbl
). -[To] Riemannian spaces having their curvature bounded below by a positive number. Usphei Math. Nauk. 14, 87-135 (1959). Transl. Amer. Math. Soc. 37, 291-336 (1964). | Zbl
). -[Va1] Une généralisation du théorème de Hardy-Littlewood-Sobolev pour les espaces de Dirichlet. C. R. Acad. Sci. Paris 299, 651-654 (1984). | MR | Zbl
). -[Va2] Hardy-Littlewood theory for semigroups. J. Funct. Anal. 63, 240-260 (1985). | MR | Zbl
). -[Va3] Analysis and geometry on groups. Proceedings of the International Congress of Mathematicians, Kyoto (1990), vol. II, 951-957 (1991). Springer-Verlag. | MR | Zbl
). -[Y-Z] On the estimate of the first eigenvalue of a compact Riemannian manifold. Sci. Sinica Ser.A 27, 1265-1273 (1984). | MR | Zbl
), ). -[Wa] Logarithmic Sobolev inequalities on noncompact Riemannian manifolds. Probab. Theory Relat. Fields 109, 417-424 (1997). | MR | Zbl
). -[Yo] Functional Analysis. Sixth Edition. Springer (1995).
). -