L’auteur étudie dans un espace de Green (en particulier un domaine borné de
@article{AIF_1962__12__573_0, author = {Doob, J. L.}, title = {Boundary properties of functions with finite {Dirichlet} integrals}, journal = {Annales de l'Institut Fourier}, pages = {573--621}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {12}, year = {1962}, doi = {10.5802/aif.126}, mrnumber = {30 #3992}, zbl = {0121.08604}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.126/} }
TY - JOUR AU - Doob, J. L. TI - Boundary properties of functions with finite Dirichlet integrals JO - Annales de l'Institut Fourier PY - 1962 SP - 573 EP - 621 VL - 12 PB - Institut Fourier PP - Grenoble UR - https://www.numdam.org/articles/10.5802/aif.126/ DO - 10.5802/aif.126 LA - en ID - AIF_1962__12__573_0 ER -
Doob, J. L. Boundary properties of functions with finite Dirichlet integrals. Annales de l'Institut Fourier, Tome 12 (1962), pp. 573-621. doi : 10.5802/aif.126. https://www.numdam.org/articles/10.5802/aif.126/
[1] A counterexample in the classification of open Riemann surfaces. Ann. Acad. Sci. Fennicae. Sr. A. I., Math. Phys., n° 120 (1952). | Zbl
et ,[2] Boundary values of functions with finite Dirichlet integral. (Conference on partial differential equations, U. of Kansas (1954). Studies in eigenvalue problems. Technical report, 14. | Zbl
,[3] Étude et extensions du principe de Dirichlet. Annales Inst. Fourier, 5 (1953-1954), 371-419. | Numdam | MR | Zbl
,[4] Espaces et lignes de Green. Annales Inst. Fourier, 3 (1951), 119-263. | Numdam | MR | Zbl
, et ,[5] Les potentiels d'énergie finie. Acta math., 82 (1950), 107-183. | MR | Zbl
,[6] Les espaces du type de Beppo Levi. Annales Inst. Fourier, 5 (1953-1954), 305-370. | Numdam | MR | Zbl
et ,[7] Conditional Brownian motion and the boundary limits of harmonic functions. Bull. Soc. Math. France, 85 (1957), 431-458. | Numdam | MR | Zbl
,[8] A non-probabilistic proof of the relative Fatou theorem. Annales Inst. Fourier, 9 (1959), 293-300. | Numdam | MR | Zbl
,[9] Solution of the problem of Plateau. Trans. Amer. Math. Soc., 33 (1931), 263-321. | JFM | MR | Zbl
,[10] Une propriété des fonctions B.L.D. dans un espace de Green. Annales Inst. Fourier, 9 (1959), 301-304. | Numdam | MR | Zbl
,[11] Sur le rôle de la frontière de R. S. Martin dans la théorie du potentiel. Annales Inst. Fourier, 7 (1957), 183-281. | Numdam | MR | Zbl
,[12] Operators generated by differential problems with eigenvalue parameter in equation and boundary condition. Medd. Lunds Univ. Mat. Sem. 14 (1959). | MR | Zbl
.[13] The Dirichlet functional. 1. J. Math. Analysis and Applications, 1 (1960), 61-112. | MR | Zbl
,[14] Some applications of functional analysis in mathematical physics (Russian), Leningrad, 1950.
,- The Douglas formula in
, Nonlinear Differential Equations and Applications NoDEA, Volume 30 (2023) no. 4 | DOI:10.1007/s00030-023-00865-9 - A note on Neumann problems on graphs, Positivity, Volume 26 (2022) no. 4 | DOI:10.1007/s11117-022-00930-0
- Stochastic Processes in the Decades after 1950, The Splendors and Miseries of Martingales (2022), p. 169 | DOI:10.1007/978-3-031-05988-9_8
- Jump processes on the boundaries of random trees, Stochastic Processes and their Applications, Volume 130 (2020) no. 2, p. 584 | DOI:10.1016/j.spa.2019.02.004
- Monopoles, Dipoles, and Harmonic Functions on Bratteli Diagrams, Acta Applicandae Mathematicae, Volume 159 (2019) no. 1, p. 169 | DOI:10.1007/s10440-018-0189-7
- Harmonic Dirichlet Functions on Planar Graphs, Discrete Computational Geometry, Volume 61 (2019) no. 3, p. 479 | DOI:10.1007/s00454-019-00057-2
- Trace operator and the Dirichlet problem for elliptic equations on arbitrary bounded open sets, Journal of Functional Analysis, Volume 277 (2019) no. 5, p. 1499 | DOI:10.1016/j.jfa.2019.06.004
- Automatic Change Detection for Real-Time Monitoring of EEG Signals, Frontiers in Physiology, Volume 9 (2018) | DOI:10.3389/fphys.2018.00325
- Graph-based structural change detection for rotating machinery monitoring, Mechanical Systems and Signal Processing, Volume 99 (2018), p. 73 | DOI:10.1016/j.ymssp.2017.06.003
- Liouville Property of Harmonic Functions of Finite Energy for Dirichlet Forms, Stochastic Partial Differential Equations and Related Fields, Volume 229 (2018), p. 25 | DOI:10.1007/978-3-319-74929-7_2
- On hyperbolic graphs induced by iterated function systems, Advances in Mathematics, Volume 313 (2017), p. 357 | DOI:10.1016/j.aim.2017.04.012
- Random walks and induced Dirichlet forms on self-similar sets, Advances in Mathematics, Volume 320 (2017), p. 1099 | DOI:10.1016/j.aim.2017.09.029
- Adaptive Change Detection for Long-Term Machinery Monitoring Using Incremental Sliding-Window, Chinese Journal of Mechanical Engineering, Volume 30 (2017) no. 6, p. 1338 | DOI:10.1007/s10033-017-0191-4
- Group-Walk Random Graphs, Groups, Graphs and Random Walks (2017), p. 190 | DOI:10.1017/9781316576571.009
- A novel framework of change-point detection for machine monitoring, Mechanical Systems and Signal Processing, Volume 83 (2017), p. 533 | DOI:10.1016/j.ymssp.2016.06.030
- Unsupervised, efficient and scalable key-frame selection for automatic summarization of surveillance videos, Multimedia Tools and Applications, Volume 76 (2017) no. 5, p. 6309 | DOI:10.1007/s11042-016-3263-z
- , Ninth International Conference on Digital Image Processing (ICDIP 2017), Volume 10420 (2017), p. 104200U | DOI:10.1117/12.2281699
- Convergence of Dirichlet Forms Induced on Boundaries of Transient Networks, Potential Analysis, Volume 47 (2017) no. 2, p. 189 | DOI:10.1007/s11118-017-9613-2
- Sup-norm-closable bilinear forms and Lagrangians, Annali di Matematica Pura ed Applicata (1923 -), Volume 195 (2016) no. 4, p. 1021 | DOI:10.1007/s10231-015-0503-1
- Orlicz norm and Sobolev-Orlicz capacity on ends of tree based on probabilistic Bessel kernels, P-Adic Numbers, Ultrametric Analysis, and Applications, Volume 7 (2015) no. 1, p. 24 | DOI:10.1134/s2070046615010033
- A Dirichlet Space on Ends of Tree and Dirichlet Forms with a Nodewise Orthogonal Property, Potential Analysis, Volume 41 (2014) no. 1, p. 245 | DOI:10.1007/s11118-013-9372-7
- Isotropic Markov semigroups on ultra-metric spaces, Russian Mathematical Surveys, Volume 69 (2014) no. 4, p. 589 | DOI:10.1070/rm2014v069n04abeh004907
- Изотропные марковские полугруппы на ультраметрических пространствах, Успехи математических наук, Volume 69 (2014) no. 4(418), p. 3 | DOI:10.4213/rm9602
- Square means versus Dirichlet integrals for harmonic functions on Riemann surfaces, Tohoku Mathematical Journal, Volume 64 (2012) no. 2 | DOI:10.2748/tmj/1341249373
- Nonreflexivity of Banach spaces of bounded harmonic functions on Riemann surfaces, Proceedings of the Japan Academy, Series A, Mathematical Sciences, Volume 87 (2011) no. 1 | DOI:10.3792/pjaa.87.1
- Nonseparability of Banach spaces of bounded harmonic functions on Riemann surfaces, Proceedings of the Japan Academy, Series A, Mathematical Sciences, Volume 87 (2011) no. 8 | DOI:10.3792/pjaa.87.130
- Dirichlet forms and associated heat kernels on the Cantor set induced by random walks on trees, Advances in Mathematics, Volume 225 (2010) no. 5, p. 2674 | DOI:10.1016/j.aim.2010.04.029
- Revuz measures under time change, Science in China Series A: Mathematics, Volume 51 (2008) no. 3, p. 321 | DOI:10.1007/s11425-008-0040-0
- Traces of symmetric Markov processes and their characterizations, The Annals of Probability, Volume 34 (2006) no. 3 | DOI:10.1214/009117905000000657
- Time changes of symmetric diffusions and Feller measures, The Annals of Probability, Volume 32 (2004) no. 4 | DOI:10.1214/009117904000000649
- Crossing Estimates and Convergence of Dirichlet Functions Along Random Walk and Diffusion Paths, The Annals of Probability, Volume 27 (1999) no. 2 | DOI:10.1214/aop/1022677392
- Bibliography, Dirichlet Forms and Symmetric Markov Processes (1994), p. 369 | DOI:10.1515/9783110889741.369
- Lignes de Green et frontiere de R.S. Martin en quelques cas particuliers, Séminaire de Théorie du Potentiel Paris, No. 9, Volume 1393 (1989), p. 226 | DOI:10.1007/bfb0085783
- Die zweite randwertaufgabe der potentialtheorie als duales gegenstück zur ersten, Complex Variables, Theory and Application: An International Journal, Volume 10 (1988) no. 4, p. 249 | DOI:10.1080/17476938808814304
- Biharmonic functions with prescribed fine normal derivative on the Martin boundary, Acta Mathematica Hungarica, Volume 49 (1987) no. 1-2, p. 139 | DOI:10.1007/bf01956316
- A Martin boundary in the plane, Transactions of the American Mathematical Society, Volume 293 (1986) no. 2, p. 623 | DOI:10.1090/s0002-9947-1986-0816315-6
- Construction de processus de Nelson reversibles, Séminaire de Probabilités XIX 1983/84, Volume 1123 (1985), p. 12 | DOI:10.1007/bfb0075836
- Semilinear boundary value problems with respect to an ideal boundary on a selfadjoint harmonic space, Hiroshima Mathematical Journal, Volume 14 (1984) no. 1 | DOI:10.32917/hmj/1206133146
- Bibliography, Dirichlet Forms and Markov Processes, Volume 23 (1980), p. 191 | DOI:10.1016/s0924-6509(08)70637-8
- Probleme de type mixte sur la frontiere de Martin, Séminaire de Théorie du Potentiel Paris, No. 5, Volume 814 (1980), p. 20 | DOI:10.1007/bfb0094146
- Martingales et changements de temps, Séminaire de Probabilités XIII, Volume 721 (1979), p. 385 | DOI:10.1007/bfb0070878
- A global harmonic function theory in the context of Dirichlet spaces, Journal of Mathematical Analysis and Applications, Volume 63 (1978) no. 3, p. 606 | DOI:10.1016/0022-247x(78)90062-8
- Neumann problem on a symmetric Brelot's harmonic space, Function Theoretic Methods for Partial Differential Equations, Volume 561 (1976), p. 314 | DOI:10.1007/bfb0087646
- Probl�me de Neumann sur les espaces harmoniques, Mathematische Annalen, Volume 224 (1976) no. 1, p. 53 | DOI:10.1007/bf01420288
- Boundary value problems of biharmonic functions, Nagoya Mathematical Journal, Volume 61 (1976), p. 85 | DOI:10.1017/s0027763000017311
- Sur une classe des solutions du problème de Dirichlet extérieur dans un espace harmonique de Brelot, Séminaire de Théorie du Potentiel Paris, No. 2, Volume 563 (1976), p. 142 | DOI:10.1007/bfb0087576
- The method of extremal length, Bulletin of the American Mathematical Society, Volume 80 (1974) no. 4, p. 587 | DOI:10.1090/s0002-9904-1974-13517-2
- H p -spaces of harmonic functions and the Wiener compactification, Mathematische Zeitschrift, Volume 132 (1973) no. 2, p. 135 | DOI:10.1007/bf01213918
- A new operator for elliptic equations, and theP-compactification for ?u=Pu, Mathematische Annalen, Volume 189 (1970) no. 4, p. 242 | DOI:10.1007/bf01359704
- On some boundary properties of harmonic Dirichlet functions, Proceedings of the Japan Academy, Series A, Mathematical Sciences, Volume 46 (1970) no. 3 | DOI:10.3792/pja/1195520408
- Boundary value problems for the equation
with respect to an ideal boundary, Hiroshima Mathematical Journal, Volume 32 (1968) no. 1 | DOI:10.32917/hmj/1206138806 - On Some Families of Analytic Functions on Riemann Surfaces, Nagoya Mathematical Journal, Volume 31 (1968), p. 57 | DOI:10.1017/s0027763000012630
- La Topologie fine en Théorie du Potentiel, Symposium on Probability Methods in Analysis, Volume 31 (1967), p. 36 | DOI:10.1007/bfb0061105
- Remarks on the Boundary Limits of Harmonic Functions, SIAM Journal on Numerical Analysis, Volume 3 (1966) no. 2, p. 229 | DOI:10.1137/0703017
- Resolvent kernels on a Martin space, Proceedings of the Japan Academy, Series A, Mathematical Sciences, Volume 41 (1965) no. 4 | DOI:10.3792/pja/1195522423
- Notes on Green lines and Kuramochi boundary of a Green space, Hiroshima Mathematical Journal, Volume 28 (1964) no. 1 | DOI:10.32917/hmj/1206139505
- Normal derivatives on an ideal boundary, Hiroshima Mathematical Journal, Volume 28 (1964) no. 2 | DOI:10.32917/hmj/1206139392
- On Feller’s Kernel and the Drichlet Norm, Nagoya Mathematical Journal, Volume 24 (1964), p. 167 | DOI:10.1017/s0027763000011399
Cité par 58 documents. Sources : Crossref