Boundary properties of functions with finite Dirichlet integrals
Annales de l'Institut Fourier, Tome 12 (1962), pp. 573-621.

L’auteur étudie dans un espace de Green (en particulier un domaine borné de Rn) les fonctions BLD (limites en un certain sens des fonctions assez régulières à intégrale de Dirichlet finie). On se ramène au cas harmonique montré qu’une telle fonction harmonique u est solution d’un problème de Dirichlet-Martin (c’est-à-dire correspond à une donnée u sur la frontière de Martin), ce qui entraîne l’existence d’une limite “fine” u p.p. Cela résulte de travaux antérieurs et de la remarque que u2 a une mesure de Riesz associée de total fini. Puis on exprime l’intégrale de Dirichlet de u au moyen de u, grâce à la fonction Θ de la thèse Naïm. D’autre part, on introduit et utilise systématiquement des notions de dérivée normale généralisée à la frontière de Martin, permettant d’étendre divers problèmes classiques relatifs à une frontière euclidienne assez régulière.

@article{AIF_1962__12__573_0,
     author = {Doob, J. L.},
     title = {Boundary properties of functions with finite {Dirichlet} integrals},
     journal = {Annales de l'Institut Fourier},
     pages = {573--621},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {12},
     year = {1962},
     doi = {10.5802/aif.126},
     mrnumber = {30 #3992},
     zbl = {0121.08604},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/aif.126/}
}
TY  - JOUR
AU  - Doob, J. L.
TI  - Boundary properties of functions with finite Dirichlet integrals
JO  - Annales de l'Institut Fourier
PY  - 1962
SP  - 573
EP  - 621
VL  - 12
PB  - Institut Fourier
PP  - Grenoble
UR  - https://www.numdam.org/articles/10.5802/aif.126/
DO  - 10.5802/aif.126
LA  - en
ID  - AIF_1962__12__573_0
ER  - 
%0 Journal Article
%A Doob, J. L.
%T Boundary properties of functions with finite Dirichlet integrals
%J Annales de l'Institut Fourier
%D 1962
%P 573-621
%V 12
%I Institut Fourier
%C Grenoble
%U https://www.numdam.org/articles/10.5802/aif.126/
%R 10.5802/aif.126
%G en
%F AIF_1962__12__573_0
Doob, J. L. Boundary properties of functions with finite Dirichlet integrals. Annales de l'Institut Fourier, Tome 12 (1962), pp. 573-621. doi : 10.5802/aif.126. https://www.numdam.org/articles/10.5802/aif.126/

[1] Lars V. Ahlfors et H. L. Royden, A counterexample in the classification of open Riemann surfaces. Ann. Acad. Sci. Fennicae. Sr. A. I., Math. Phys., n° 120 (1952). | Zbl

[2] N. Aronszajn, Boundary values of functions with finite Dirichlet integral. (Conference on partial differential equations, U. of Kansas (1954). Studies in eigenvalue problems. Technical report, 14. | Zbl

[3] M. Brelot, Étude et extensions du principe de Dirichlet. Annales Inst. Fourier, 5 (1953-1954), 371-419. | Numdam | MR | Zbl

[4] M. Brelot, et G. Choquet, Espaces et lignes de Green. Annales Inst. Fourier, 3 (1951), 119-263. | Numdam | MR | Zbl

[5] J. Deny, Les potentiels d'énergie finie. Acta math., 82 (1950), 107-183. | MR | Zbl

[6] J. Deny et J. L. Lions, Les espaces du type de Beppo Levi. Annales Inst. Fourier, 5 (1953-1954), 305-370. | Numdam | MR | Zbl

[7] J. L. Doob, Conditional Brownian motion and the boundary limits of harmonic functions. Bull. Soc. Math. France, 85 (1957), 431-458. | Numdam | MR | Zbl

[8] J. L. Doob, A non-probabilistic proof of the relative Fatou theorem. Annales Inst. Fourier, 9 (1959), 293-300. | Numdam | MR | Zbl

[9] J. Douglas, Solution of the problem of Plateau. Trans. Amer. Math. Soc., 33 (1931), 263-321. | JFM | MR | Zbl

[10] M. Godefroid, Une propriété des fonctions B.L.D. dans un espace de Green. Annales Inst. Fourier, 9 (1959), 301-304. | Numdam | MR | Zbl

[11] Linda Naïm, Sur le rôle de la frontière de R. S. Martin dans la théorie du potentiel. Annales Inst. Fourier, 7 (1957), 183-281. | Numdam | MR | Zbl

[12] Jan Odhnoff. Operators generated by differential problems with eigenvalue parameter in equation and boundary condition. Medd. Lunds Univ. Mat. Sem. 14 (1959). | MR | Zbl

[13] Howard Osborn, The Dirichlet functional. 1. J. Math. Analysis and Applications, 1 (1960), 61-112. | MR | Zbl

[14] S. L. Sobolev, Some applications of functional analysis in mathematical physics (Russian), Leningrad, 1950.

  • Bogdan, Krzysztof; Fafuła, Damian; Rutkowski, Artur The Douglas formula in Lp, Nonlinear Differential Equations and Applications NoDEA, Volume 30 (2023) no. 4 | DOI:10.1007/s00030-023-00865-9
  • Hinz, Michael; Schwarz, Michael A note on Neumann problems on graphs, Positivity, Volume 26 (2022) no. 4 | DOI:10.1007/s11117-022-00930-0
  • Meyer, Paul-André; Shafer, Glenn Stochastic Processes in the Decades after 1950, The Splendors and Miseries of Martingales (2022), p. 169 | DOI:10.1007/978-3-031-05988-9_8
  • Tokushige, Yuki Jump processes on the boundaries of random trees, Stochastic Processes and their Applications, Volume 130 (2020) no. 2, p. 584 | DOI:10.1016/j.spa.2019.02.004
  • Bezuglyi, Sergey; Jorgensen, Palle E. T. Monopoles, Dipoles, and Harmonic Functions on Bratteli Diagrams, Acta Applicandae Mathematicae, Volume 159 (2019) no. 1, p. 169 | DOI:10.1007/s10440-018-0189-7
  • Hutchcroft, Tom Harmonic Dirichlet Functions on Planar Graphs, Discrete Computational Geometry, Volume 61 (2019) no. 3, p. 479 | DOI:10.1007/s00454-019-00057-2
  • Klimsiak, Tomasz Trace operator and the Dirichlet problem for elliptic equations on arbitrary bounded open sets, Journal of Functional Analysis, Volume 277 (2019) no. 5, p. 1499 | DOI:10.1016/j.jfa.2019.06.004
  • Gao, Zhen; Lu, Guoliang; Yan, Peng; Lyu, Chen; Li, Xueyong; Shang, Wei; Xie, Zhaohong; Zhang, Wanming Automatic Change Detection for Real-Time Monitoring of EEG Signals, Frontiers in Physiology, Volume 9 (2018) | DOI:10.3389/fphys.2018.00325
  • Lu, Guoliang; Liu, Jie; Yan, Peng Graph-based structural change detection for rotating machinery monitoring, Mechanical Systems and Signal Processing, Volume 99 (2018), p. 73 | DOI:10.1016/j.ymssp.2017.06.003
  • Fukushima, Masatoshi Liouville Property of Harmonic Functions of Finite Energy for Dirichlet Forms, Stochastic Partial Differential Equations and Related Fields, Volume 229 (2018), p. 25 | DOI:10.1007/978-3-319-74929-7_2
  • Lau, Ka-Sing; Wang, Xiang-Yang On hyperbolic graphs induced by iterated function systems, Advances in Mathematics, Volume 313 (2017), p. 357 | DOI:10.1016/j.aim.2017.04.012
  • Kong, Shi-Lei; Lau, Ka-Sing; Wong, Ting-Kam Leonard Random walks and induced Dirichlet forms on self-similar sets, Advances in Mathematics, Volume 320 (2017), p. 1099 | DOI:10.1016/j.aim.2017.09.029
  • Wang, Teng; Lu, Guo-Liang; Liu, Jie; Yan, Peng Adaptive Change Detection for Long-Term Machinery Monitoring Using Incremental Sliding-Window, Chinese Journal of Mechanical Engineering, Volume 30 (2017) no. 6, p. 1338 | DOI:10.1007/s10033-017-0191-4
  • Georgakopoulos, Agelos Group-Walk Random Graphs, Groups, Graphs and Random Walks (2017), p. 190 | DOI:10.1017/9781316576571.009
  • Lu, Guoliang; Zhou, Yiqi; Lu, Changhou; Li, Xueyong A novel framework of change-point detection for machine monitoring, Mechanical Systems and Signal Processing, Volume 83 (2017), p. 533 | DOI:10.1016/j.ymssp.2016.06.030
  • Lu, Guoliang; Zhou, Yiqi; Li, Xueyong; Yan, Peng Unsupervised, efficient and scalable key-frame selection for automatic summarization of surveillance videos, Multimedia Tools and Applications, Volume 76 (2017) no. 5, p. 6309 | DOI:10.1007/s11042-016-3263-z
  • Falco, Charles M.; Jiang, Xudong; Lyu, Chen; Lu, Guoliang; Cheng, Bin; Zheng, Xiangwei, Ninth International Conference on Digital Image Processing (ICDIP 2017), Volume 10420 (2017), p. 104200U | DOI:10.1117/12.2281699
  • Kasue, Atsushi Convergence of Dirichlet Forms Induced on Boundaries of Transient Networks, Potential Analysis, Volume 47 (2017) no. 2, p. 189 | DOI:10.1007/s11118-017-9613-2
  • Hinz, Michael Sup-norm-closable bilinear forms and Lagrangians, Annali di Matematica Pura ed Applicata (1923 -), Volume 195 (2016) no. 4, p. 1021 | DOI:10.1007/s10231-015-0503-1
  • Hara, C.; Iijima, R.; Kaneko, H.; Matsumoto, H. Orlicz norm and Sobolev-Orlicz capacity on ends of tree based on probabilistic Bessel kernels, P-Adic Numbers, Ultrametric Analysis, and Applications, Volume 7 (2015) no. 1, p. 24 | DOI:10.1134/s2070046615010033
  • Kaneko, Hiroshi A Dirichlet Space on Ends of Tree and Dirichlet Forms with a Nodewise Orthogonal Property, Potential Analysis, Volume 41 (2014) no. 1, p. 245 | DOI:10.1007/s11118-013-9372-7
  • Bendikov, A D; Grigor'yan, A A; Pittet, Ch; Woess, W Isotropic Markov semigroups on ultra-metric spaces, Russian Mathematical Surveys, Volume 69 (2014) no. 4, p. 589 | DOI:10.1070/rm2014v069n04abeh004907
  • Бендиков, Александр Давидович; Bendikov, Alexander Davidovich; Григорьян, Александр Асатурович; Grigor'yan, Alexander Asaturovich; Питтэ, Кристоф; Pittet, Christophe; Вeсс, Вольфганг; Woess, Wolfgang Изотропные марковские полугруппы на ультраметрических пространствах, Успехи математических наук, Volume 69 (2014) no. 4(418), p. 3 | DOI:10.4213/rm9602
  • Masaoka, Hiroaki; Nakai, Mitsuru Square means versus Dirichlet integrals for harmonic functions on Riemann surfaces, Tohoku Mathematical Journal, Volume 64 (2012) no. 2 | DOI:10.2748/tmj/1341249373
  • Nakai, Mitsuru Nonreflexivity of Banach spaces of bounded harmonic functions on Riemann surfaces, Proceedings of the Japan Academy, Series A, Mathematical Sciences, Volume 87 (2011) no. 1 | DOI:10.3792/pjaa.87.1
  • Nakai, Mitsuru Nonseparability of Banach spaces of bounded harmonic functions on Riemann surfaces, Proceedings of the Japan Academy, Series A, Mathematical Sciences, Volume 87 (2011) no. 8 | DOI:10.3792/pjaa.87.130
  • Kigami, Jun Dirichlet forms and associated heat kernels on the Cantor set induced by random walks on trees, Advances in Mathematics, Volume 225 (2010) no. 5, p. 2674 | DOI:10.1016/j.aim.2010.04.029
  • He, Ping; Ying, JianGang Revuz measures under time change, Science in China Series A: Mathematics, Volume 51 (2008) no. 3, p. 321 | DOI:10.1007/s11425-008-0040-0
  • Chen, Zhen-Qing; Fukushima, Masatoshi; Ying, Jiangang Traces of symmetric Markov processes and their characterizations, The Annals of Probability, Volume 34 (2006) no. 3 | DOI:10.1214/009117905000000657
  • Fukushima, Masatoshi; He, Ping; Ying, Jiangang Time changes of symmetric diffusions and Feller measures, The Annals of Probability, Volume 32 (2004) no. 4 | DOI:10.1214/009117904000000649
  • Ancona, Alano; Lyons, Russell; Peres, Yuval Crossing Estimates and Convergence of Dirichlet Functions Along Random Walk and Diffusion Paths, The Annals of Probability, Volume 27 (1999) no. 2 | DOI:10.1214/aop/1022677392
  • Bibliography, Dirichlet Forms and Symmetric Markov Processes (1994), p. 369 | DOI:10.1515/9783110889741.369
  • Salazar, Jorge Lignes de Green et frontiere de R.S. Martin en quelques cas particuliers, Séminaire de Théorie du Potentiel Paris, No. 9, Volume 1393 (1989), p. 226 | DOI:10.1007/bfb0085783
  • Wagenknecht, Niels Die zweite randwertaufgabe der potentialtheorie als duales gegenstück zur ersten, Complex Variables, Theory and Application: An International Journal, Volume 10 (1988) no. 4, p. 249 | DOI:10.1080/17476938808814304
  • Helms, L. L. Biharmonic functions with prescribed fine normal derivative on the Martin boundary, Acta Mathematica Hungarica, Volume 49 (1987) no. 1-2, p. 139 | DOI:10.1007/bf01956316
  • Salisbury, Thomas S. A Martin boundary in the plane, Transactions of the American Mathematical Society, Volume 293 (1986) no. 2, p. 623 | DOI:10.1090/s0002-9947-1986-0816315-6
  • Meyer, P. A.; Zheng, W. A. Construction de processus de Nelson reversibles, Séminaire de Probabilités XIX 1983/84, Volume 1123 (1985), p. 12 | DOI:10.1007/bfb0075836
  • Maeda, Fumi-Yuki Semilinear boundary value problems with respect to an ideal boundary on a selfadjoint harmonic space, Hiroshima Mathematical Journal, Volume 14 (1984) no. 1 | DOI:10.32917/hmj/1206133146
  • Bibliography, Dirichlet Forms and Markov Processes, Volume 23 (1980), p. 191 | DOI:10.1016/s0924-6509(08)70637-8
  • Bosgiraud, Jacques Probleme de type mixte sur la frontiere de Martin, Séminaire de Théorie du Potentiel Paris, No. 5, Volume 814 (1980), p. 20 | DOI:10.1007/bfb0094146
  • Le Jan, Yves Martingales et changements de temps, Séminaire de Probabilités XIII, Volume 721 (1979), p. 385 | DOI:10.1007/bfb0070878
  • Dougherty, Edward A global harmonic function theory in the context of Dirichlet spaces, Journal of Mathematical Analysis and Applications, Volume 63 (1978) no. 3, p. 606 | DOI:10.1016/0022-247x(78)90062-8
  • Kori, Tosiaki Neumann problem on a symmetric Brelot's harmonic space, Function Theoretic Methods for Partial Differential Equations, Volume 561 (1976), p. 314 | DOI:10.1007/bfb0087646
  • Kori, Tosiaki Probl�me de Neumann sur les espaces harmoniques, Mathematische Annalen, Volume 224 (1976) no. 1, p. 53 | DOI:10.1007/bf01420288
  • Tanaka, Hidematu Boundary value problems of biharmonic functions, Nagoya Mathematical Journal, Volume 61 (1976), p. 85 | DOI:10.1017/s0027763000017311
  • Kori, Tosiaki Sur une classe des solutions du problème de Dirichlet extérieur dans un espace harmonique de Brelot, Séminaire de Théorie du Potentiel Paris, No. 2, Volume 563 (1976), p. 142 | DOI:10.1007/bfb0087576
  • Rodin, Burton The method of extremal length, Bulletin of the American Mathematical Society, Volume 80 (1974) no. 4, p. 587 | DOI:10.1090/s0002-9904-1974-13517-2
  • Schiff, Joel L. H p -spaces of harmonic functions and the Wiener compactification, Mathematische Zeitschrift, Volume 132 (1973) no. 2, p. 135 | DOI:10.1007/bf01213918
  • Nakai, Mitsuru; Sario, Leo A new operator for elliptic equations, and theP-compactification for ?u=Pu, Mathematische Annalen, Volume 189 (1970) no. 4, p. 242 | DOI:10.1007/bf01359704
  • Kusunoki, Yukio On some boundary properties of harmonic Dirichlet functions, Proceedings of the Japan Academy, Series A, Mathematical Sciences, Volume 46 (1970) no. 3 | DOI:10.3792/pja/1195520408
  • Maeda, Fumi-Yuki Boundary value problems for the equation uqu=0 with respect to an ideal boundary, Hiroshima Mathematical Journal, Volume 32 (1968) no. 1 | DOI:10.32917/hmj/1206138806
  • Yamashita, Shinji On Some Families of Analytic Functions on Riemann Surfaces, Nagoya Mathematical Journal, Volume 31 (1968), p. 57 | DOI:10.1017/s0027763000012630
  • Brelot, Marcel La Topologie fine en Théorie du Potentiel, Symposium on Probability Methods in Analysis, Volume 31 (1967), p. 36 | DOI:10.1007/bfb0061105
  • Doob, J. L. Remarks on the Boundary Limits of Harmonic Functions, SIAM Journal on Numerical Analysis, Volume 3 (1966) no. 2, p. 229 | DOI:10.1137/0703017
  • Fukushima, Masatoshi Resolvent kernels on a Martin space, Proceedings of the Japan Academy, Series A, Mathematical Sciences, Volume 41 (1965) no. 4 | DOI:10.3792/pja/1195522423
  • Maeda, Fumi-Yuki Notes on Green lines and Kuramochi boundary of a Green space, Hiroshima Mathematical Journal, Volume 28 (1964) no. 1 | DOI:10.32917/hmj/1206139505
  • Maeda, Fumi-Yuki Normal derivatives on an ideal boundary, Hiroshima Mathematical Journal, Volume 28 (1964) no. 2 | DOI:10.32917/hmj/1206139392
  • Fukushima, Masatoshi On Feller’s Kernel and the Drichlet Norm, Nagoya Mathematical Journal, Volume 24 (1964), p. 167 | DOI:10.1017/s0027763000011399

Cité par 58 documents. Sources : Crossref