Approximation variationnelle des problèmes aux limites
Annales de l'Institut Fourier, Tome 14 (1964) no. 2, pp. 345-444.

L’auteur donne un procédé convergent d’approximation systématique des solutions “faibles” d’une vaste classe de problèmes aux limites elliptiques. Il retrouve ainsi des résultats sur la stabilité et sur les phénomènes de perturbation singulière d’une part, et sur l’approximation de certains problèmes par des problèmes de Dirichlet ou de Neumann d’autre part. Les méthodes variationnelles de Galerkin et des différences finies font l’objet d’une étude plus poussée : l’auteur applique ces méthodes aux solutions des problèmes les plus généraux d’ordre 2, ainsi qu’à des problèmes de transmissions, d’élasticité et de type mêlé d’ordre 2m. Une étude des systèmes linéaires approchés est faite, et quelques résultats numériques sont donnés.

@article{AIF_1964__14_2_345_0,
     author = {Cea, Jean},
     title = {Approximation variationnelle des probl\`emes aux limites},
     journal = {Annales de l'Institut Fourier},
     pages = {345--444},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {14},
     number = {2},
     year = {1964},
     doi = {10.5802/aif.181},
     mrnumber = {30 #5037},
     zbl = {0127.08003},
     language = {fr},
     url = {https://www.numdam.org/articles/10.5802/aif.181/}
}
TY  - JOUR
AU  - Cea, Jean
TI  - Approximation variationnelle des problèmes aux limites
JO  - Annales de l'Institut Fourier
PY  - 1964
SP  - 345
EP  - 444
VL  - 14
IS  - 2
PB  - Institut Fourier
PP  - Grenoble
UR  - https://www.numdam.org/articles/10.5802/aif.181/
DO  - 10.5802/aif.181
LA  - fr
ID  - AIF_1964__14_2_345_0
ER  - 
%0 Journal Article
%A Cea, Jean
%T Approximation variationnelle des problèmes aux limites
%J Annales de l'Institut Fourier
%D 1964
%P 345-444
%V 14
%N 2
%I Institut Fourier
%C Grenoble
%U https://www.numdam.org/articles/10.5802/aif.181/
%R 10.5802/aif.181
%G fr
%F AIF_1964__14_2_345_0
Cea, Jean. Approximation variationnelle des problèmes aux limites. Annales de l'Institut Fourier, Tome 14 (1964) no. 2, pp. 345-444. doi : 10.5802/aif.181. https://www.numdam.org/articles/10.5802/aif.181/

[1] Bourbaki, Espaces Vectoriels topologiques, livre V, Hermann, Paris. | Zbl

[2] S. Campanato, Sui problema de Picone relativo all'équilibro di un corpo incastrato. Ric. Mat., 6, 125-149 (1957). | MR | Zbl

[3] S. Campanato, Sui problemi al contorno per sistemi di equazioni differenziali lineari del tipo dell'elasticita. Ann. Scuola Norm. Sup. Pisa, 13, 223-258 et 275-302 (1959). | Numdam | MR | Zbl

[4] J. Cea, Sur l'approximation des problèmes aux limites, C. R. Acad. Sci., Paris, t. 254, p. 1729-1731 et 2919-2921 (1962) et t. 255, p. 442-444, (1962). | MR | Zbl

[5] J. Deny et J. L. Lions, Les espaces du type de Beppo Levi, Ann. Inst. Fourier, 5, 305-370 (1955). | Numdam | MR | Zbl

[6] K. O. Friedrichs, A Finite difference scheme for the Neumann and the Dirichlet problem. Applied Mathematics Center, New York, 1962.

[7] E. Gagliardo, Caratterizzazioni delle trace sulla frontiera relative ad alcune classi di funzioni in n variabili, Ric. Mat., 5, 169-205 (1956).

[8] D. Huet, Phénomènes de perturbation singulière, Ann. Inst. Fourier, 10, 1-96 (1960). | Numdam | MR | Zbl

[9] O. A. Ladyzenskaya, La méthode des différences finies dans la théorie des équations aux dérivées partielles (en russe), Ouspechi Mat. Nauk., 12, 123-148 (1957).

[10] J. L. Lions, Problèmes aux limites en théorie des distributions, Acta. Math., 94, 13-153 (1955). | MR | Zbl

[11] J. L. Lions, Équations différentielles opérationnelles et problèmes aux limites. Springer, Collection Jaune, (1961). | Zbl

[12] J. L. Lions, Méthodes d'approximation numérique des problèmes aux limites de la physique mathématique. Cours Paris (1962).

[13] J. L. Lions, Sur l'approximation des solutions de certains problèmes aux limites, Rendic. Sem. Mat. Padova (1962). | Numdam | Zbl

[14] W. Littman, Résolution du problème de Dirichlet par la méthode des différences finies, C.R. Acad. Sci., 247, 2270-2272 (1958). | MR | Zbl

[15] E. Magenes et G. Stampacchi, A. Problemi al contorno per le équizioni differenziali di tipo ellitico, Ann. Scuola Norm. Sup. Pisa, 12, 247-358 (1958). | Numdam | Zbl

[16] L. Schwartz, Théorie des distributions, Hermann, Paris. | Zbl

[17] S. L. Sobolev, Applications de l'analyse fonctionnelle à la physique mathématique. Leningrad 1950.

[18] R. S. Varga, Matrix iterative analysis. Prentice Hall (1963). | Zbl

  • Barbera, Robin; Berthelon, Thomas; Letournel, Roxane; Ghigliotti, Giovanni; Balarac, Guillaume, AIAA SCITECH 2025 Forum (2025) | DOI:10.2514/6.2025-1378
  • Kielian, Nils; Stiemer, Marcus Fast Domain Decomposition Algorithm Using Barycentric Interpolation and Overlapping Subdomains for 3D Multiscale Problems, IEEE Journal on Multiscale and Multiphysics Computational Techniques, Volume 10 (2025), p. 198 | DOI:10.1109/jmmct.2025.3547852
  • Arendt, W; Chalendar, I; Eymard, R Space-time error estimates for approximations of linear parabolic problems with generalized time boundary conditions, IMA Journal of Numerical Analysis, Volume 45 (2025) no. 2, p. 1173 | DOI:10.1093/imanum/drae028
  • Deeb, Ahmad; Dutykh, Denys Numerical integration of Navier–Stokes equations by time series expansion and stabilized FEM, Mathematics and Computers in Simulation, Volume 233 (2025), p. 208 | DOI:10.1016/j.matcom.2025.01.023
  • Boulkhemair, Abdesslam; Chakib, Abdelkrim; Sadik, Azeddine Differentiation with Respect to Domains of Boundary Integral Functionals Involving Support Functions, Applied Mathematics Optimization, Volume 90 (2024) no. 1 | DOI:10.1007/s00245-024-10168-9
  • Bode, Tobias One-point quadrature of higher-order finite and virtual elements in nonlinear analysis, Computational Mechanics, Volume 73 (2024) no. 5, p. 1187 | DOI:10.1007/s00466-023-02406-8
  • Burman, Erik; Nechita, Mihai; Oksanen, Lauri Optimal Approximation of Unique Continuation, Foundations of Computational Mathematics (2024) | DOI:10.1007/s10208-024-09655-w
  • Kirby, Robert C.; Shapero, Daniel High-order bounds-satisfying approximation of partial differential equations via finite element variational inequalities, Numerische Mathematik, Volume 156 (2024) no. 3, p. 927 | DOI:10.1007/s00211-024-01405-y
  • Chandler-Wilde, S. N.; Spence, E. A. Coercive second-kind boundary integral equations for the Laplace Dirichlet problem on Lipschitz domains, Numerische Mathematik, Volume 156 (2024) no. 4, p. 1325 | DOI:10.1007/s00211-024-01424-9
  • Jeribi, Aref Introduction to Finite Element, Problems in Finite Element Methods (2024), p. 175 | DOI:10.1007/978-981-97-5710-7_4
  • Droniou, J.; Eymard, R.; Gallouët, T.; Guichard, C.; Herbin, R. Optimal error estimates for non-conforming approximations of linear parabolic problems with minimal regularity, SeMA Journal (2024) | DOI:10.1007/s40324-024-00360-w
  • Spitzer, Klaus Electromagnetic Modeling Using Adaptive Grids – Error Estimation and Geometry Representation, Surveys in Geophysics, Volume 45 (2024) no. 1, p. 277 | DOI:10.1007/s10712-023-09794-9
  • Meredith, L.T.; Rezazadeh, M.; Huq, M.F.; Drobny, J.; Srinivasaragavan, V.V.; Sahni, O.; Curreli, D. hPIC2: A hardware-accelerated, hybrid particle-in-cell code for dynamic plasma-material interactions, Computer Physics Communications, Volume 283 (2023), p. 108569 | DOI:10.1016/j.cpc.2022.108569
  • Guglielmi, Nicola; Manucci, Mattia Model Order Reduction in Contour Integral Methods for Parametric PDEs, SIAM Journal on Scientific Computing, Volume 45 (2023) no. 4, p. A1711 | DOI:10.1137/22m1520189
  • Greif, Constantin; Junk, Philipp; Urban, Karsten Linear/Ridge expansions: enhancing linear approximations by ridge functions, Advances in Computational Mathematics, Volume 48 (2022) no. 3 | DOI:10.1007/s10444-022-09936-4
  • Mou, Wenlong; Pananjady, Ashwin; Wainwright, Martin J. Optimal Oracle Inequalities for Projected Fixed-Point Equations, with Applications to Policy Evaluation, Mathematics of Operations Research (2022) | DOI:10.1287/moor.2022.1341
  • Chandler-Wilde, S. N.; Spence, E. A. Coercivity, essential norms, and the Galerkin method for second-kind integral equations on polyhedral and Lipschitz domains, Numerische Mathematik, Volume 150 (2022) no. 2, p. 299 | DOI:10.1007/s00211-021-01256-x
  • Ecevit, Fatih; Boubendir, Yassine; Anand, Akash; Lazergui, Souaad Spectral Galerkin boundary element methods for high-frequency sound-hard scattering problems, Numerische Mathematik, Volume 150 (2022) no. 3, p. 803 | DOI:10.1007/s00211-022-01269-0
  • Wolf, Felix Foundations, Analysis and Implementation of Isogeometric Boundary Elements for Electromagnetism (2021), p. 15 | DOI:10.1007/978-3-030-61939-8_2
  • Escapil-Inchauspé, Paul; Jerez-Hanckes, Carlos Bi-parametric operator preconditioning, Computers Mathematics with Applications, Volume 102 (2021), p. 220 | DOI:10.1016/j.camwa.2021.10.012
  • Mosco, Umberto; Vivaldi, Maria Agostina On the External Approximation of Sobolev Spaces by M-Convergence, Fractals in Engineering: Theoretical Aspects and Numerical Approximations, Volume 8 (2021), p. 125 | DOI:10.1007/978-3-030-61803-2_6
  • Pardo, David; Matuszyk, Paweł J.; Puzyrev, Vladimir; Torres-Verdín, Carlos; Nam, Myung Jin; Calo, Victor M. Introduction, Modeling of Resistivity and Acoustic Borehole Logging Measurements Using Finite Element Methods (2021), p. 1 | DOI:10.1016/b978-0-12-821454-1.00006-6
  • Bibliography, Modeling of Resistivity and Acoustic Borehole Logging Measurements Using Finite Element Methods (2021), p. 277 | DOI:10.1016/b978-0-12-821454-1.00019-4
  • Hong, Qingguo; Wu, Shuonan; Xu, Jinchao An extended Galerkin analysis for elliptic problems, Science China Mathematics, Volume 64 (2021) no. 9, p. 2141 | DOI:10.1007/s11425-019-1809-7
  • Boulkhemair, A.; Chakib, A.; Nachaoui, A.; Niftiyev, A. A.; Sadik, A. On a numerical shape optimization approach for a class of free boundary problems, Computational Optimization and Applications, Volume 77 (2020) no. 2, p. 509 | DOI:10.1007/s10589-020-00212-z
  • Ern, Alexandre; Zanotti, Pietro A quasi-optimal variant of the hybrid high-order method for elliptic partial differential equations with H−1 loads, IMA Journal of Numerical Analysis, Volume 40 (2020) no. 4, p. 2163 | DOI:10.1093/imanum/drz057
  • Shaw, Robert A. The completeness properties of Gaussian‐type orbitals in quantum chemistry, International Journal of Quantum Chemistry, Volume 120 (2020) no. 17 | DOI:10.1002/qua.26264
  • Escapil-Inchauspé, Paul; Jerez-Hanckes, Carlos Helmholtz Scattering by Random Domains: First-Order Sparse Boundary Element Approximation, SIAM Journal on Scientific Computing, Volume 42 (2020) no. 5, p. A2561 | DOI:10.1137/19m1279277
  • Deparis, Simone; Iubatti, Antonio; Pegolotti, Luca Coupling non-conforming discretizations of PDEs by spectral approximation of the Lagrange multiplier space, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 53 (2019) no. 5, p. 1667 | DOI:10.1051/m2an/2019030
  • Borker, Raunak; Huang, Daniel; Grimberg, Sebastian; Farhat, Charbel; Avery, Philip; Rabinovitch, Jason Mesh adaptation framework for embedded boundary methods for computational fluid dynamics and fluid‐structure interaction, International Journal for Numerical Methods in Fluids, Volume 90 (2019) no. 8, p. 389 | DOI:10.1002/fld.4728
  • Laestadius, A.; Faulstich, F. M. The coupled-cluster formalism – a mathematical perspective, Molecular Physics, Volume 117 (2019) no. 17, p. 2362 | DOI:10.1080/00268976.2018.1564848
  • Dũng, Dinh Linear collective collocation approximation for parametric and stochastic elliptic PDEs, Sbornik: Mathematics, Volume 210 (2019) no. 4, p. 565 | DOI:10.1070/sm9068
  • Hong, Qingguo; Wang, Fei; Wu, Shuonan; Xu, Jinchao A unified study of continuous and discontinuous Galerkin methods, Science China Mathematics, Volume 62 (2019) no. 1, p. 1 | DOI:10.1007/s11425-017-9341-1
  • Dinh, Dung Линейная совместная коллокационная аппроксимация для параметрических и стохастических эллиптических дифференциальных уравнений с частными производными, Математический сборник, Volume 210 (2019) no. 4, p. 103 | DOI:10.4213/sm9068
  • Ern, Alexandre; Guermond, Jean-Luc Abstract Nonconforming Error Estimates and Application to Boundary Penalty Methods for Diffusion Equations and Time-Harmonic Maxwell’s Equations, Computational Methods in Applied Mathematics, Volume 18 (2018) no. 3, p. 451 | DOI:10.1515/cmam-2017-0058
  • Dasgupta, Gautam Conclusions—Plane Elements: Polynomial Stresses of Degree n, Finite Element Concepts (2018), p. 175 | DOI:10.1007/978-1-4939-7423-8_9
  • Veeser, Andreas; Zanotti, Pietro Quasi-Optimal Nonconforming Methods for Symmetric Elliptic Problems. I—Abstract Theory, SIAM Journal on Numerical Analysis, Volume 56 (2018) no. 3, p. 1621 | DOI:10.1137/17m1116362
  • Fernández-Bodereau, Enrique; Flores, Viviana Yolanda; Delgado-Ruiz, Rafael Arcesio; Aragoneses, Juan Manuel; Calvo-Guirado, José Luis Evaluation of the Cortical Deformation Induced by Distal Cantilevers Supported by Extra-Short Implants: A Finite Elements Analysis Study, Symmetry, Volume 10 (2018) no. 12, p. 762 | DOI:10.3390/sym10120762
  • Tahiri, Ahmed Numerical computations of the PCD method, Boletim da Sociedade Paranaense de Matemática, Volume 37 (2017) no. 1, p. 39 | DOI:10.5269/bspm.v37i1.33985
  • Capitanelli, Raffaela; Vivaldi, Maria Agostina FEM for quasilinear obstacle problems in bad domains, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 51 (2017) no. 6, p. 2465 | DOI:10.1051/m2an/2017033
  • Kvasov, Roman; Steinberg, Lev Modeling of Size Effects in Bending of Perforated Cosserat Plates, Modelling and Simulation in Engineering, Volume 2017 (2017), p. 1 | DOI:10.1155/2017/5246197
  • Chen, Qingshan Error analysis of staggered finite difference finite volume schemes on unstructured meshes, Numerical Methods for Partial Differential Equations, Volume 33 (2017) no. 4, p. 1159 | DOI:10.1002/num.22137
  • Rapp, Piotr Numerical Non-Equilibrium and Smoothing of Solutions in The Difference Method for Plane 2-Dimensional Adhesive Joints / Nierównowaga Numeryczna i Wygładzanie Rozwiazań w Metodzie Różnicowej Dla Dwuwymiarowych Połączeń Klejowych, Civil and Environmental Engineering Reports, Volume 20 (2016) no. 1, p. 101 | DOI:10.1515/ceer-2016-0010
  • Campos Pinto, Martin Constructing exact sequences on non-conforming discrete spaces, Comptes Rendus. Mathématique, Volume 354 (2016) no. 7, p. 691 | DOI:10.1016/j.crma.2016.03.008
  • Boulmezaoud, T.Z.; Arar, N.; Kerdid, N.; Kourta, A. Discretization by rational and quasi-rational functions of multi-dimensional elliptic problems in the whole space, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 50 (2016) no. 1, p. 263 | DOI:10.1051/m2an/2015042
  • Chen, Qingshan Stable and convergent approximation of two-dimensional vector fields on unstructured meshes, Journal of Computational and Applied Mathematics, Volume 307 (2016), p. 284 | DOI:10.1016/j.cam.2016.01.049
  • Kühn, Thomas; Mayer, Sebastian; Ullrich, Tino Counting Via Entropy: New Preasymptotics for the Approximation Numbers of Sobolev Embeddings, SIAM Journal on Numerical Analysis, Volume 54 (2016) no. 6, p. 3625 | DOI:10.1137/16m106580x
  • Rapp, P. Mechanics of adhesive joints as a plane problem of the theory of elasticity. Part II: Displacement formulation for orthotropic adherends, Archives of Civil and Mechanical Engineering, Volume 15 (2015) no. 2, p. 603 | DOI:10.1016/j.acme.2014.06.004
  • Tahiri, Ahmed The PCD Method on Composite Grid, Boletim da Sociedade Paranaense de Matemática, Volume 34 (2015) no. 2, p. 121 | DOI:10.5269/bspm.v34i2.26120
  • Cuminato, José Alberto; Ruas, Vitoriano Unification of distance inequalities for linear variational problems, Computational and Applied Mathematics, Volume 34 (2015) no. 3, p. 1009 | DOI:10.1007/s40314-014-0163-6
  • Grohs, Philipp; Hardering, Hanne; Sander, Oliver Optimal A Priori Discretization Error Bounds for Geodesic Finite Elements, Foundations of Computational Mathematics, Volume 15 (2015) no. 6, p. 1357 | DOI:10.1007/s10208-014-9230-z
  • Stern, Ari Banach space projections and Petrov–Galerkin estimates, Numerische Mathematik, Volume 130 (2015) no. 1, p. 125 | DOI:10.1007/s00211-014-0658-5
  • Ouaki, Franck; Allaire, Grégoire; Desroziers, Sylvain; Enchéry, Guillaume A priori error estimate of a multiscale finite element method for transport modeling, SeMA Journal, Volume 67 (2015) no. 1, p. 1 | DOI:10.1007/s40324-014-0023-8
  • Vondřejc, Jaroslav; Zeman, Jan; Marek, Ivo An FFT-based Galerkin method for homogenization of periodic media, Computers Mathematics with Applications, Volume 68 (2014) no. 3, p. 156 | DOI:10.1016/j.camwa.2014.05.014
  • Kress, Rainer Projection Methods, Linear Integral Equations, Volume 82 (2014), p. 241 | DOI:10.1007/978-1-4614-9593-2_13
  • Stein, Erwin History of the Finite Element Method – Mathematics Meets Mechanics – Part II: Mathematical Foundation of Primal FEM for Elastic Deformations, Error Analysis and Adaptivity, The History of Theoretical, Material and Computational Mechanics - Mathematics Meets Mechanics and Engineering, Volume 1 (2014), p. 443 | DOI:10.1007/978-3-642-39905-3_23
  • Capatina, Anca Approximations of Variational Inequalities, Variational Inequalities and Frictional Contact Problems, Volume 31 (2014), p. 115 | DOI:10.1007/978-3-319-10163-7_7
  • Rapp, Piotr WITHDRAWN: Mechanics of adhesive joints as a plane problem of the theory of elasticity. Part II: Displacement formulation for orthotropic adherends, Archives of Civil and Mechanical Engineering (2013) | DOI:10.1016/j.acme.2013.08.001
  • Dũng, Dinh; Ullrich, Tino N-Widths and ε-Dimensions for High-Dimensional Approximations, Foundations of Computational Mathematics, Volume 13 (2013) no. 6, p. 965 | DOI:10.1007/s10208-013-9149-9
  • Arioli, Mario; Liesen, Jörg; Miçdlar, Agnieszka; Strakoš, Zdeněk Interplay between discretization and algebraic computation in adaptive numerical solutionof elliptic PDE problems, GAMM-Mitteilungen, Volume 36 (2013) no. 1, p. 102 | DOI:10.1002/gamm.201310006
  • Boffi, Daniele; Brezzi, Franco; Fortin, Michel Variational Formulations and Finite Element Methods, Mixed Finite Element Methods and Applications, Volume 44 (2013), p. 1 | DOI:10.1007/978-3-642-36519-5_1
  • Lions, J. L. Approximation NuméRique des InéQuations DéVolution, Constructive Aspects of Functional Analysis (2011), p. 293 | DOI:10.1007/978-3-642-10984-3_3
  • Mosco, Umberto An Introduction to the Approximate Solution of Variational Inequalities, Constructive Aspects of Functional Analysis (2011), p. 497 | DOI:10.1007/978-3-642-10984-3_5
  • Lions, J. L. Problemes aux Limites non Homogenes a Donnees Irregulieres, Numerical Analysis of Partial Differential Equations (2010), p. 283 | DOI:10.1007/978-3-642-11057-3_12
  • Raviart, P. A. Approximation des Equations d'evolution par des Methodes Variationnelles, Numerical Analysis of Partial Differential Equations (2010), p. 357 | DOI:10.1007/978-3-642-11057-3_16
  • Nochetto, Ricardo H.; Siebert, Kunibert G.; Veeser, Andreas Theory of adaptive finite element methods: An introduction, Multiscale, Nonlinear and Adaptive Approximation (2009), p. 409 | DOI:10.1007/978-3-642-03413-8_12
  • Amara, Mohamed; Djellouli, Rabia; Farhat, Charbel Convergence Analysis of a Discontinuous Galerkin Method with Plane Waves and Lagrange Multipliers for the Solution of Helmholtz Problems, SIAM Journal on Numerical Analysis, Volume 47 (2009) no. 2, p. 1038 | DOI:10.1137/060673230
  • Delprat-Jannaud, Florence; Lailly, Patrick Wave propagation in heterogeneous media: Effects of fine-scale heterogeneity, GEOPHYSICS, Volume 73 (2008) no. 3, p. T37 | DOI:10.1190/1.2897326
  • Tone, Florentina On the long‐time stability of the Crank–Nicolson scheme for the 2D Navier–Stokes equations, Numerical Methods for Partial Differential Equations, Volume 23 (2007) no. 5, p. 1235 | DOI:10.1002/num.20219
  • Yoshikawa, Atsushi On computability of the Galerkin procedure, Proceedings of the Japan Academy, Series A, Mathematical Sciences, Volume 83 (2007) no. 5 | DOI:10.3792/pjaa.83.69
  • FAURE, S.; PHAM, D.; TEMAM, R. COMPARISON OF FINITE VOLUME AND FINITE DIFFERENCE METHODS AND APPLICATION, Analysis and Applications, Volume 04 (2006) no. 02, p. 163 | DOI:10.1142/s0219530506000723
  • Chen, Wei; Křížek, Michal What is the smallest possible constant in Céa’s lemma?, Applications of Mathematics, Volume 51 (2006) no. 2, p. 129 | DOI:10.1007/s10492-006-0009-7
  • Oliveira, E.R. de Arantes e From formal solutions to computational methods avoiding passages to the limit, Engineering Analysis with Boundary Elements, Volume 29 (2005) no. 4, p. 305 | DOI:10.1016/j.enganabound.2005.01.003
  • Tahiri, Ahmed The PCD Method, Numerical Methods and Applications, Volume 2542 (2003), p. 563 | DOI:10.1007/3-540-36487-0_64
  • Thomée, Vidar From finite differences to finite elements, Journal of Computational and Applied Mathematics, Volume 128 (2001) no. 1-2, p. 1 | DOI:10.1016/s0377-0427(00)00507-0
  • Thomée, Vidar From finite differences to finite elements A short history of numerical analysis of partial differential equations, Numerical Analysis: Historical Developments in the 20th Century (2001), p. 361 | DOI:10.1016/b978-0-444-50617-7.50016-1
  • Thomée, Vidar From finite differences to finite elements A short history of numerical analysis of partial differential equations, Partial Differential Equations (2001), p. 1 | DOI:10.1016/b978-0-444-50616-0.50004-x
  • Garcia, Salvador Incremental unknowns for solving the incompressible Navier–Stokes equations, Mathematics and Computers in Simulation, Volume 52 (2000) no. 5-6, p. 445 | DOI:10.1016/s0378-4754(00)00158-0
  • Dubois, Fran�ois Finite volumes and mixed Petrov-Galerkin finite elements: The unidimensional problem, Numerical Methods for Partial Differential Equations, Volume 16 (2000) no. 3, p. 335 | DOI:10.1002/(sici)1098-2426(200005)16:3<335::aid-num5>3.0.co;2-x
  • Garcia, Salvador Algebraic conditioning analysis of the incremental unknowns preconditioner, Applied Mathematical Modelling, Volume 22 (1998) no. 4-5, p. 351 | DOI:10.1016/s0307-904x(98)10017-3
  • Mer, Katherine Variational analysis of a mixed element/volume scheme with fourth-order viscosity on general triangulations, Computer Methods in Applied Mechanics and Engineering, Volume 153 (1998) no. 1-2, p. 45 | DOI:10.1016/s0045-7825(97)00064-9
  • Marion, Martine; Temam, Roger Navier-stokes equations: Theory and approximation, Numerical Methods for Solids (Part 3) Numerical Methods for Fluids (Part 1), Volume 6 (1998), p. 503 | DOI:10.1016/s1570-8659(98)80010-0
  • Goyon, O. Theoretical study of a finite difference scheme applied to steady-state Navier-Stokes-like equations, Applied Mathematics Letters, Volume 10 (1997) no. 6, p. 71 | DOI:10.1016/s0893-9659(97)00107-9
  • Milojević, P.S. Implicit Function Theorems, Approximate Solvability of Nonlinear Equations, and Error Estimates, Journal of Mathematical Analysis and Applications, Volume 211 (1997) no. 2, p. 424 | DOI:10.1006/jmaa.1997.5477
  • Garcia, Salvador Higher-order incremental unknowns, hierarchical basis, and nonlinear dissipative evolutionary equations, Applied Numerical Mathematics, Volume 19 (1996) no. 4, p. 467 | DOI:10.1016/0168-9274(95)00097-6
  • Yan, Yin Attractors and Error Estimates for Discretizations of Incompressible Navier–Stokes Equations, SIAM Journal on Numerical Analysis, Volume 33 (1996) no. 4, p. 1451 | DOI:10.1137/s0036142993248092
  • Kerkhoven, Thomas Piecewise Linear Petrov–Galerkin Error Estimates for the Box Method, SIAM Journal on Numerical Analysis, Volume 33 (1996) no. 5, p. 1864 | DOI:10.1137/s0036142992241824
  • Le Tallec, Patrick Numerical methods for nonlinear three-dimensional elasticity, Handbook of Numerical Analysis Volume 3, Volume 3 (1994), p. 465 | DOI:10.1016/s1570-8659(05)80018-3
  • Chen, Min; Temam, Roger Incremental Unknowns in Finite Differences: Condition Number of the Matrix, SIAM Journal on Matrix Analysis and Applications, Volume 14 (1993) no. 2, p. 432 | DOI:10.1137/0614031
  • Gwinner, Joachim Cea's error estimate for strongly monotone variational inequalities, Applicable Analysis, Volume 44 (1992) no. 3-4, p. 253 | DOI:10.1080/00036819208840082
  • Gwinner, Joachim Cea's error estimate for strongly monotone variational inequalities, Applicable Analysis, Volume 45 (1992) no. 1-4, p. 179 | DOI:10.1080/00036819208840094
  • Chen, Min; Temam, Roger The incremental unknown method II, Applied Mathematics Letters, Volume 4 (1991) no. 3, p. 77 | DOI:10.1016/0893-9659(91)90041-s
  • Ciarlet, P.G. Basic error estimates for elliptic problems, Finite Element Methods (Part 1), Volume 2 (1991), p. 17 | DOI:10.1016/s1570-8659(05)80039-0
  • Tinsley Oden, J. Finite elements: An introduction, Finite Element Methods (Part 1), Volume 2 (1991), p. 3 | DOI:10.1016/s1570-8659(05)80038-9
  • Temam, R. Stability analysis of the nonlinear Galerkin method, Mathematics of Computation, Volume 57 (1991) no. 196, p. 477 | DOI:10.1090/s0025-5718-1991-1094959-2
  • Oden, J. Tinsley Historical comments on finite elements, A history of scientific computing (1990), p. 152 | DOI:10.1145/87252.88083
  • Temam, R. Inertial Manifolds and Multigrid Methods, SIAM Journal on Mathematical Analysis, Volume 21 (1990) no. 1, p. 154 | DOI:10.1137/0521009
  • Wachutka, Gerhard General solution theory for Schrödinger's equation in arbitrary 2D-periodic spatial structures I. The monolayer problem, Annals of Physics, Volume 187 (1988) no. 2, p. 269 | DOI:10.1016/0003-4916(88)90151-0
  • Wendland, W. L. On Asymptotic Error Estimates for Combined Bem and Fem, Finite Element and Boundary Element Techniques from Mathematical and Engineering Point of View, Volume 301 (1988), p. 273 | DOI:10.1007/978-3-7091-2826-8_6
  • Kral, J.; Wendland, W. On the Applicability of the Fredholm-Radon Method in Potential Theory and the Panel Method, Panel Methods in Fluid Mechanics with Emphasis on Aerodynamics (1988), p. 120 | DOI:10.1007/978-3-663-13997-3_10
  • Scott, Jennifer A. Dixon A Unified Analysis of Discretization Methods for Volterra-Type Equations, Constructive Methods for the Practical Treatment of Integral Equations (1985), p. 244 | DOI:10.1007/978-3-0348-9317-6_21
  • E Oliveira, E. R. De Arantes On the accuracy of finite difference solutions to elliptic partial differential equations, International Journal for Numerical Methods in Engineering, Volume 21 (1985) no. 2, p. 229 | DOI:10.1002/nme.1620210204
  • Croc, E.; Pelissier, M.C.; Penel, P.; Cordier, P. Modelling, mathematical and numerical study of ion neutralization in an irradiated solvent, Mathematical Modelling, Volume 6 (1985) no. 3, p. 227 | DOI:10.1016/0270-0255(85)90046-6
  • Wendland, W. L. On Asymptotic Error Analysis and Mathematical Principles for Boundary Element Methods, Boundary Element Techniques in Computer-Aided Engineering (1984), p. 417 | DOI:10.1007/978-94-009-6192-0_23
  • Thomée, Vidar The finite difference versus the finite element method for the solution of boundary value problems, Bulletin of the Australian Mathematical Society, Volume 29 (1984) no. 2, p. 267 | DOI:10.1017/s000497270002150x
  • Demkowicz, Leszek; Karafiat, Andrzej; Liszka, Tadeusz On some convergence results for FDM with irregular mesh, Computer Methods in Applied Mechanics and Engineering, Volume 42 (1984) no. 3, p. 343 | DOI:10.1016/0045-7825(84)90013-6
  • Stephens, A.B; Bell, J.B; Solomon, J.M; Hackerman, L.B A finite difference galerkin formulation for the incompressible Navier-Stokes equations, Journal of Computational Physics, Volume 53 (1984) no. 1, p. 152 | DOI:10.1016/0021-9991(84)90057-3
  • Nie, Yiyi; Chen, Shaobei ABOUT SOME NOTES IN THE VARIATIONAL PRINCIPLE, Acta Mathematica Scientia, Volume 3 (1983) no. 1, p. 85 | DOI:10.1016/s0252-9602(18)30589-7
  • Arnold, Douglas N.; Wendland, Wolfgang L. On the asymptotic convergence of collocation methods, Mathematics of Computation, Volume 41 (1983) no. 164, p. 349 | DOI:10.1090/s0025-5718-1983-0717691-6
  • Wendland, W. L. Boundary Element Methods and Their Asymptotic Convergence, Theoretical Acoustics and Numerical Techniques (1983), p. 135 | DOI:10.1007/978-3-7091-4340-7_4
  • References, Numerical Analysis of Variational Inequalities, Volume 8 (1981), p. 521 | DOI:10.1016/s0168-2024(08)70208-x
  • Papatheodorou, T.S.; Jesanis, M.E. Callocation methods for volterra integrodifferential equations with singular kernels, Journal of Computational and Applied Mathematics, Volume 6 (1980) no. 1, p. 3 | DOI:10.1016/0771-050x(80)90011-x
  • Scapolla, T. A mixed finite element method for the biharmonic problem, RAIRO. Analyse numérique, Volume 14 (1980) no. 1, p. 55 | DOI:10.1051/m2an/1980140100551
  • Schumann, Rainer; Zeidler, Eberhard The finite difference method for quasilinear elliptic equations of order 2M, Numerical Functional Analysis and Optimization, Volume 1 (1979) no. 2, p. 161 | DOI:10.1080/01630567908816009
  • Cuvelier, C. Resolution numerique d'un probleme de controle optimal d'un couplage des equations de navier-stokes et celle de la chaleur, Calcolo, Volume 15 (1978) no. 4, p. 345 | DOI:10.1007/bf02576518
  • Gonzalez, Roberto; Rofman, Edmundo An algorithm to obtain the maximum solution of the Hamilton-Jacobi equation, Optimization Techniques Part 1, Volume 6 (1978), p. 109 | DOI:10.1007/bfb0007229
  • Bibliography, The Finite Element Method for Elliptic Problems, Volume 4 (1978), p. 481 | DOI:10.1016/s0168-2024(08)70189-9
  • References, Navier–Stokes Equations - Theory and Numerical Analysis, Volume 2 (1977), p. 464 | DOI:10.1016/s0168-2024(09)70073-6
  • Fortin, M. Utilisation de la méthode des éléments finis en mécanique des fluides, II, Calcolo, Volume 13 (1976) no. 1, p. 1 | DOI:10.1007/bf02575949
  • Girault, V. Nonelliptic approximation of a class of partial differential equations with Neumann boundary condition, Mathematics of Computation, Volume 30 (1976) no. 133, p. 68 | DOI:10.1090/s0025-5718-1976-0395266-5
  • Rousselet, B. Problemes Inverses De Valeurs Propres, Optimization Techniques Modeling and Optimization in the Service of Man Part 2, Volume 41 (1976), p. 77 | DOI:10.1007/3-540-07623-9_281
  • Comincioli, Valeriano On some oblique derivative problems arising in the fluid flow in porous media. A theoretical and numerical approach, Applied Mathematics Optimization, Volume 1 (1975) no. 4, p. 313 | DOI:10.1007/bf01447956
  • Fortin, M. Utilisation de la méthode des éléments finis en mécanique des fluides, I, Calcolo, Volume 12 (1975) no. 4, p. 405 | DOI:10.1007/bf02575757
  • Spence, Alastair On the convergence of the Nystr�m method for the integral equation eigenvalue problem, Numerische Mathematik, Volume 25 (1975) no. 1, p. 57 | DOI:10.1007/bf01419528
  • Le Rest, Daniel; Dubost, Gérard; Madani, Ahmed Propagation guidée d’une onde électromagnétique le long d’une ligne a bande dans un milieu ferrite ou diélectrique, Annales Des Télécommunications, Volume 29 (1974) no. 1-2, p. 55 | DOI:10.1007/bf02997744
  • Mancino, O. G. Risoluzione numerica del problema della trave elastica vincolata, Calcolo, Volume 11 (1974) no. 2, p. 171 | DOI:10.1007/bf02575823
  • Thomas, K. S. On the approximate solution of operator equations, Numerische Mathematik, Volume 23 (1974) no. 3, p. 231 | DOI:10.1007/bf01400306
  • Girault, V. Theory of a Finite Difference Method on Irregular Networks, SIAM Journal on Numerical Analysis, Volume 11 (1974) no. 2, p. 260 | DOI:10.1137/0711026
  • Baiocchi, C.; Comincioli, V.; Guerri, L.; Volpi, G. Free boundary problems in the theory of fluid flow through porous media: A numerical approach, Calcolo, Volume 10 (1973) no. 1, p. 1 | DOI:10.1007/bf02576418
  • Brezzi, F. Sul metodo a cinque punti per il laplaciano, Calcolo, Volume 10 (1973) no. 3-4, p. 339 | DOI:10.1007/bf02575850
  • Ženíšek, Alexander Polynomial approximation on tetrahedrons in the finite element method, Journal of Approximation Theory, Volume 7 (1973) no. 4, p. 334 | DOI:10.1016/0021-9045(73)90036-1
  • Freeman, R.S Approximate solutions of elliptic differential equations, Journal of Mathematical Analysis and Applications, Volume 42 (1973) no. 3, p. 596 | DOI:10.1016/0022-247x(73)90167-4
  • ZLÁMAL, M. SOME RECENT ADVANCES IN THE MATHEMATICS OF FINITE ELEMENTS, The Mathematics of Finite Elements and Applications (1973), p. 59 | DOI:10.1016/b978-0-12-747250-8.50007-2
  • Cea, par J.; Glowinski, et R. Methodes numeriques pour i'ecoulement laminaire d'un fluide rigide viscoplastique incompressible, International Journal of Computer Mathematics, Volume 3 (1972) no. 1-4, p. 225 | DOI:10.1080/00207167208803065
  • Stummel, Friedrich Diskrete Konvergenz linearer Operatoren III, Linear Operators and Approximation / Lineare Operatoren und Approximation (1972), p. 196 | DOI:10.1007/978-3-0348-7283-6_19
  • Weinberger, H. F. On Optimal Numerical Solution of Partial Differential Equations, SIAM Journal on Numerical Analysis, Volume 9 (1972) no. 1, p. 182 | DOI:10.1137/0709017
  • THEORY OF APPROXIMATION, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (1972), p. 83 | DOI:10.1016/b978-0-12-068650-6.50010-1
  • Sibony, Moïse Sur l'approximation d'équations et inéquations aux dérivées partielles non linéaires de type monotone, Journal of Mathematical Analysis and Applications, Volume 34 (1971) no. 3, p. 502 | DOI:10.1016/0022-247x(71)90095-3
  • Stummel, Friedrich Diskrete Konvergenz linearer Operatoren. II, Mathematische Zeitschrift, Volume 120 (1971) no. 3, p. 231 | DOI:10.1007/bf01117498
  • Aubin, Jean Pierre; Burchard, Hermann G. SOME ASPECTS OF THE METHOD OF THE HYPERCIRCLE APPLIED TO ELLIPTIC VARIATIONAL PROBLEMS**Sponsored by the Mathematics Research Center, United States Army, Madison, Wisconsin, under Contract No. DA-31-124-ARO-D-462., Numerical Solution of Partial Differential Equations–II (1971), p. 1 | DOI:10.1016/b978-0-12-358502-8.50006-2
  • Schultz, Martin H. L2 Error Bounds for the Rayleigh–Ritz–Galerkin Method, SIAM Journal on Numerical Analysis, Volume 8 (1971) no. 4, p. 737 | DOI:10.1137/0708067
  • Astrakhantsev, G.P. A finite difference method for solving the third boundary value problem for elliptic and parabolic equations in an arbitrary region. Iterative solution of finite difference equations. I, USSR Computational Mathematics and Mathematical Physics, Volume 11 (1971) no. 1, p. 141 | DOI:10.1016/0041-5553(71)90104-2
  • Nitsche, J. Lineare spline-funktionen und die methoden von ritz für elliptische randwertprobleme, Archive for Rational Mechanics and Analysis, Volume 36 (1970) no. 5, p. 348 | DOI:10.1007/bf00282271
  • Sibony, Moïse Méthodes itératives pour les équations et inéquations aux dérivées partielles non linéaires de type monotone, Calcolo, Volume 7 (1970) no. 1-2, p. 65 | DOI:10.1007/bf02575559
  • Cea, Jean Recherche numerique d'un optimum dans un Espace produit, Colloquium on Methods of Optimization, Volume 112 (1970), p. 33 | DOI:10.1007/bfb0060196
  • Bramble, James H.; Zlámal, Miloš Triangular elements in the finite element method, Mathematics of Computation, Volume 24 (1970) no. 112, p. 809 | DOI:10.1090/s0025-5718-1970-0282540-0
  • Stummel, Friedrich Diskrete Konvergenz linearer Operatoren. I, Mathematische Annalen, Volume 190 (1970) no. 1, p. 45 | DOI:10.1007/bf01349967
  • Grigorieff, Rolf Dieter Über die Koerzitivität gewöhnlicher Differenzenoperatoren und die Konvergenz von Mehrschrittverfahren, Numerische Mathematik, Volume 15 (1970) no. 3, p. 196 | DOI:10.1007/bf02168969
  • Mosco, Umberto Convergence of convex sets and of solutions of variational inequalities, Advances in Mathematics, Volume 3 (1969) no. 4, p. 510 | DOI:10.1016/0001-8708(69)90009-7
  • Témam, R. Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (I), Archive for Rational Mechanics and Analysis, Volume 32 (1969) no. 2, p. 135 | DOI:10.1007/bf00247678
  • di Gugliemlo, F. Construction d’approximations des espaces de sobolev sur des reseaux en simplexes, CALCOLO, Volume 6 (1969) no. 2, p. 279 | DOI:10.1007/bf02576159
  • Schultz, Martin H. Error bounds for the Rayleigh-Ritz-Galerkin method, Journal of Mathematical Analysis and Applications, Volume 27 (1969) no. 3, p. 524 | DOI:10.1016/0022-247x(69)90133-4
  • Grigorieff, Rolf Dieter Approximation von Eigenwertproblemen und Gleichungen zweiter Art in Hilbertschen R�umen, Mathematische Annalen, Volume 183 (1969) no. 1, p. 45 | DOI:10.1007/bf01361262
  • Frehse, Jens Existenz und Konvergenz von L�sungen nichtlinearer elliptischer Differenzengleichungen unter Dirichletrandbedingungen, Mathematische Zeitschrift, Volume 109 (1969) no. 4, p. 311 | DOI:10.1007/bf01110121
  • Ciarlet, P. G.; Schultz, M. H.; Varga, R. S. Numerical methods of high-order accuracy for nonlinear boundary value problems, Numerische Mathematik, Volume 13 (1969) no. 1, p. 51 | DOI:10.1007/bf02165273
  • Bramble, J. H. On the convergence of difference approximations to weak solutions of Dirichlet's problem, Numerische Mathematik, Volume 13 (1969) no. 2, p. 101 | DOI:10.1007/bf02163229
  • Schultz, Martin H. L-Multivariate Approximation Theory, SIAM Journal on Numerical Analysis, Volume 6 (1969) no. 2, p. 161 | DOI:10.1137/0706017
  • Temam, Roger Sur la stabilité et la convergence de la méthode des pas fractionnaires, Annali di Matematica Pura ed Applicata, Volume 79 (1968) no. 1, p. 191 | DOI:10.1007/bf02415183
  • Bramble, J. H.; Kellogg, R. B.; Thomée, V. On the rate of convergence of some difference schemes for second order elliptic equations, BIT, Volume 8 (1968) no. 3, p. 154 | DOI:10.1007/bf01933418
  • Katsanis, Theodore Numerical solution of symmetric positive differential equations, Mathematics of Computation, Volume 22 (1968) no. 104, p. 763 | DOI:10.1090/s0025-5718-1968-0245214-9
  • Birkhoff, G.; Schultz, M. H.; Varga, R. S. Piecewise Hermite interpolation in one and two variables with applications to partial differential equations, Numerische Mathematik, Volume 11 (1968) no. 3, p. 232 | DOI:10.1007/bf02161845
  • Zlámal, Miloš On the finite element method, Numerische Mathematik, Volume 12 (1968) no. 5, p. 394 | DOI:10.1007/bf02161362
  • Sauer, N Properties of bilinear forms on Hilbert spaces related to stability properties of certain partial differential operators, Journal of Mathematical Analysis and Applications, Volume 20 (1967) no. 1, p. 124 | DOI:10.1016/0022-247x(67)90112-6
  • Stummel, Friedrich Elliptische Differenzenoperatoren unter Dirichletrandbedingungen, Mathematische Zeitschrift, Volume 97 (1967) no. 3, p. 169 | DOI:10.1007/bf01111697
  • Comincioli, V. Approssimazione numerica di problemi periodici per equazioni a derivate parziali di tipo parabolico, Calcolo, Volume 2 (1966) no. S1, p. 143 | DOI:10.1007/bf02575622

Cité par 165 documents. Sources : Crossref