Perturbation of harmonic structures and an index-zero theorem
Annales de l'Institut Fourier, Tome 20 (1970) no. 1, pp. 317-359.

Dans le cadre d’une théorie des faisceaux de fonctions “harmoniques”, on introduit une notion de perturbation de ces faisceaux, qui correspond au remplacement de l’opérateur Δ par Δ+f . dans la théorie classique. Les faisceaux pris au point de départ satisfont à certaines hypothèses, plus faibles que les axiomes de Bauer, et on trouve que les faisceaux perturbés satisfont encore à ces mêmes hypothèses. Les résultats entraînent la finitude et l’égalité des dimensions des espaces H 0 (W,H) et H 1 (W,H), dans le cas où la base W du faisceau H est compacte. Ceci est une généralisation du théorème classique qui dit que l’indice d’un opérateur elliptique du second ordre sur une variété compacte est nul. Comme conséquence, on trouve que les espaces linéaires H W et H W * (où W est encore compacte) ont la même dimension finie, si le faisceau H satisfait aux axiomes de Brelot et si son adjoint existe.

In the framework of an axiomatic theory of sheaves of “harmonic” functions, a notion of perturbation of these sheaves is introduced which corresponds to the replacement of the operator Δ by an operator Δ+f, in the classical situation. The “harmonic” functions with which the paper is concerned are assumed to satisfy certain hypotheses (weaker than the axioms of Bauer); it is shown that the perturbed harmonic functions also satisfy these hypotheses. Moreover, the results obtained imply that the dimensions of the spaces H 0 (W,H) and H 1 (W,H) are (finite and) equal whenever the base space W of a sheaf H satisfying these hypotheses is compact. That fact generalizes the classical theorem that the index of any second order elliptic operator on a (trivial bundle over a) compact manifold is zero. Further, it implies that whenever H satisfies the Brelot axioms and its adjoint sheaf H * exists, the spaces H W and H W * (where W is again compact) have the same (finite) dimension.

@article{AIF_1970__20_1_317_0,
     author = {Walsh, Bertram},
     title = {Perturbation of harmonic structures and an index-zero theorem},
     journal = {Annales de l'Institut Fourier},
     pages = {317--359},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {20},
     number = {1},
     year = {1970},
     doi = {10.5802/aif.344},
     mrnumber = {43 #554},
     zbl = {0187.04303},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.344/}
}
TY  - JOUR
AU  - Walsh, Bertram
TI  - Perturbation of harmonic structures and an index-zero theorem
JO  - Annales de l'Institut Fourier
PY  - 1970
SP  - 317
EP  - 359
VL  - 20
IS  - 1
PB  - Institut Fourier
PP  - Grenoble
UR  - http://archive.numdam.org/articles/10.5802/aif.344/
DO  - 10.5802/aif.344
LA  - en
ID  - AIF_1970__20_1_317_0
ER  - 
%0 Journal Article
%A Walsh, Bertram
%T Perturbation of harmonic structures and an index-zero theorem
%J Annales de l'Institut Fourier
%D 1970
%P 317-359
%V 20
%N 1
%I Institut Fourier
%C Grenoble
%U http://archive.numdam.org/articles/10.5802/aif.344/
%R 10.5802/aif.344
%G en
%F AIF_1970__20_1_317_0
Walsh, Bertram. Perturbation of harmonic structures and an index-zero theorem. Annales de l'Institut Fourier, Tome 20 (1970) no. 1, pp. 317-359. doi : 10.5802/aif.344. http://archive.numdam.org/articles/10.5802/aif.344/

[1] H. Bauer, Harmonische Räume und ihre Potentialtheorie, Springer Lecture Notes in Mathematics 22 (1966). | Zbl

[2] N. Boboc, C. Constantinescu and A. Cornea, Axiomatic theory of harmonic functions. Nonnegative superharmonic functions, Ann. Inst. Fourier (Grenoble), 15 (1965), 283-312. | Numdam | MR | Zbl

[3] M. Brelot, Lectures on Potential Theory, Tata Institute, Bombay, 1960. | MR | Zbl

[4] C.H. Dowker, Lectures on Sheaf Theory, Tata Institute, Bombay, 1957.

[5] N. Dunford and J.T. Schwartz, Linear Operators I, Interscience, New York, 1958. | MR | Zbl

[6] R.C. Gunning and H. Rossi, Analytic Functions of Several Complex Variables, Prentice-Hall, Englewood Cliffs, 1965. | MR | Zbl

[7] R.M. Hervé, Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel, Ann. Inst. Fourier (Grenoble), 12 (1962), 415-571. | Numdam | MR | Zbl

[8] T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin-Göttingen-Heidelberg, 1966. | MR | Zbl

[9] P.A. Meyer, Brelot's axiomatic theory of the Dirichlet problem and Hunt's theory, Ann. Inst. Fourier (Grenoble), 13 (1963), 357-372. | Numdam | MR | Zbl

[10] H. Schaefer, Topological Vector Spaces, Macmillan, New York, 1966. | MR | Zbl

[11] B. Walsh, Flux in axiomatic potential theory. I : Cohomology, Inventiones Math. 8 (1969), 175-221. | EuDML | MR | Zbl

[12] B. Walsh, Flux in axiomatic potential theory. II : Duality, Ann. Inst. Fourier, (Grenoble), 19 (1969). | EuDML | Numdam | MR | Zbl

Cité par Sources :