Nous présentons un exemple de structure o-minimale n’admettant pas la propriété de décomposition cellulaire . Pour ce faire, nous construisons une fonction dont le germe en admet un représentant pour tout entier , mais n’admet aucun représentant . Une condition de transcendance sur les coefficients de la série de Taylor de assure alors la quasi-analyticité de certaines algèbres différentielles engendrées par . La o-minimalité de la structure engendrée par est enfin déduite de cette quasi-analyticité.
We present an example of an o-minimal structure which does not admit cellular decomposition. To this end, we construct a function whose germ at the origin admits a representative for each integer , but no representative. A number theoretic condition on the coefficients of the Taylor series of then insures the quasianalyticity of some differential algebras induced by . The o-minimality of the structure generated by is deduced from this quasianalyticity property.
Keywords: o-minimal, smooth cell decomposition
Mot clés : o-minimal, decomposition cellulaire lisse
@article{AIF_2009__59_2_543_0, author = {Le Gal, Olivier and Rolin, Jean-Philippe}, title = {An o-minimal structure which does not admit $C^{\infty }$ cellular decomposition}, journal = {Annales de l'Institut Fourier}, pages = {543--562}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {59}, number = {2}, year = {2009}, doi = {10.5802/aif.2439}, zbl = {1193.03065}, mrnumber = {2521427}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.2439/} }
TY - JOUR AU - Le Gal, Olivier AU - Rolin, Jean-Philippe TI - An o-minimal structure which does not admit $C^{\infty }$ cellular decomposition JO - Annales de l'Institut Fourier PY - 2009 SP - 543 EP - 562 VL - 59 IS - 2 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.2439/ DO - 10.5802/aif.2439 LA - en ID - AIF_2009__59_2_543_0 ER -
%0 Journal Article %A Le Gal, Olivier %A Rolin, Jean-Philippe %T An o-minimal structure which does not admit $C^{\infty }$ cellular decomposition %J Annales de l'Institut Fourier %D 2009 %P 543-562 %V 59 %N 2 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.2439/ %R 10.5802/aif.2439 %G en %F AIF_2009__59_2_543_0
Le Gal, Olivier; Rolin, Jean-Philippe. An o-minimal structure which does not admit $C^{\infty }$ cellular decomposition. Annales de l'Institut Fourier, Tome 59 (2009) no. 2, pp. 543-562. doi : 10.5802/aif.2439. http://archive.numdam.org/articles/10.5802/aif.2439/
[1] Semianalytic and subanalytic sets, Inst. Hautes Études Sci. Publ. Math. (1988) no. 67, pp. 5-42 | DOI | Numdam | MR | Zbl
[2] -adic and real subanalytic sets, Ann. of Math. (2), Volume 128 (1988) no. 1, pp. 79-138 | DOI | MR | Zbl
[3] Tame topology and o-minimal structures, London Mathematical Society Lecture Note Series, 248, Cambridge University Press, Cambridge, 1998 | MR | Zbl
[4] The real field with convergent generalized power series, Trans. Amer. Math. Soc., Volume 350 (1998) no. 11, pp. 4377-4421 | DOI | MR | Zbl
[5] The field of reals with multisummable series and the exponential function, Proc. London Math. Soc. (3), Volume 81 (2000) no. 3, pp. 513-565 | DOI | MR | Zbl
[6] Complements of subanalytic sets and existential formulas for analytic functions, Invent. Math., Volume 125 (1996) no. 1, pp. 1-12 | DOI | MR | Zbl
[7] Idéaux de fonctions différentiables et division des distributions, Distributions, Ed. Éc. Polytech., Palaiseau, 2003, pp. 1-21 With an Appendix: “Stanisław Łojasiewicz (1926–2002)” | MR
[8] Sur les fonctions indéfiniment dérivables, Acta Math., Volume 72 (1940), pp. 15-29 | DOI | MR
[9] Quasianalytic Denjoy-Carleman classes and o-minimality, J. Amer. Math. Soc., Volume 16 (2003) no. 4, p. 751-777 (electronic) | DOI | MR | Zbl
[10] A theorem of the complement and some new o-minimal structures, Selecta Math. (N.S.), Volume 5 (1999) no. 4, pp. 397-421 | DOI | MR | Zbl
Cité par Sources :