Two generalizations of Cheeger-Gromoll splitting theorem via Bakry-Emery Ricci curvature
Annales de l'Institut Fourier, Volume 59 (2009) no. 2, pp. 563-573.

In this paper, we prove two generalized versions of the Cheeger-Gromoll splitting theorem via the non-negativity of the Bakry-Émery Ricci curavture on complete Riemannian manifolds.

Dans cet article, nous obtenons deux généralisations du théorème de scindage de Cheeger-Gromoll sur les variétés riemanniennes complètes à courbure de Ricci non-négative au sens de Bakry-Émery.

DOI: 10.5802/aif.2440
Classification: 53C20, 53C25
Keywords: Busemann function, splitting theorem, Bakry-Émery Ricci curvature
Mot clés : fonction de Busemann, théorème de scindage, courbure de Ricci de Bakry-Émery
Fang, Fuquan 1; Li, Xiang-Dong 2; Zhang, Zhenlei 1

1 Capital Normal University Department of Mathematics Beijing (P.R.China)
2 Fudan University School of Mathematical Sciences No. 220, Han Dan Road Shanghai, 200433 (P.R.China) and Université Paul Sabatier Institut de Mathématiques 118 route de Narbonne 31062 Toulouse cedex 9 (France)
@article{AIF_2009__59_2_563_0,
     author = {Fang, Fuquan and Li, Xiang-Dong and Zhang, Zhenlei},
     title = {Two generalizations of {Cheeger-Gromoll} splitting theorem via {Bakry-Emery} {Ricci} curvature},
     journal = {Annales de l'Institut Fourier},
     pages = {563--573},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {59},
     number = {2},
     year = {2009},
     doi = {10.5802/aif.2440},
     zbl = {1166.53023},
     mrnumber = {2521428},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.2440/}
}
TY  - JOUR
AU  - Fang, Fuquan
AU  - Li, Xiang-Dong
AU  - Zhang, Zhenlei
TI  - Two generalizations of Cheeger-Gromoll splitting theorem via Bakry-Emery Ricci curvature
JO  - Annales de l'Institut Fourier
PY  - 2009
SP  - 563
EP  - 573
VL  - 59
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - http://archive.numdam.org/articles/10.5802/aif.2440/
DO  - 10.5802/aif.2440
LA  - en
ID  - AIF_2009__59_2_563_0
ER  - 
%0 Journal Article
%A Fang, Fuquan
%A Li, Xiang-Dong
%A Zhang, Zhenlei
%T Two generalizations of Cheeger-Gromoll splitting theorem via Bakry-Emery Ricci curvature
%J Annales de l'Institut Fourier
%D 2009
%P 563-573
%V 59
%N 2
%I Association des Annales de l’institut Fourier
%U http://archive.numdam.org/articles/10.5802/aif.2440/
%R 10.5802/aif.2440
%G en
%F AIF_2009__59_2_563_0
Fang, Fuquan; Li, Xiang-Dong; Zhang, Zhenlei. Two generalizations of Cheeger-Gromoll splitting theorem via Bakry-Emery Ricci curvature. Annales de l'Institut Fourier, Volume 59 (2009) no. 2, pp. 563-573. doi : 10.5802/aif.2440. http://archive.numdam.org/articles/10.5802/aif.2440/

[1] Bakry, D.; Émery, Michel Diffusions hypercontractives, Séminaire de probabilités, XIX, 1983/84 (Lecture Notes in Math.), Volume 1123, Springer, Berlin, 1985, pp. 177-206 | Numdam | MR | Zbl

[2] Bakry, Dominique L’hypercontractivité et son utilisation en théorie des semigroupes, Lectures on probability theory (Saint-Flour, 1992) (Lecture Notes in Math.), Volume 1581, Springer, Berlin, 1994, pp. 1-114 | MR | Zbl

[3] Bakry, Dominique; Qian, Zhongmin Volume comparison theorems without Jacobi fields, Current trends in potential theory (Theta Ser. Adv. Math.), Volume 4, Theta, Bucharest, 2005, pp. 115-122 | MR

[4] Besse, Arthur L. Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 10, Springer-Verlag, Berlin, 1987 | MR | Zbl

[5] Calabi, E. An extension of E. Hopf’s maximum principle with an application to Riemannian geometry, Duke Math. J., Volume 25 (1958), pp. 45-56 | DOI | MR | Zbl

[6] Cheeger, Jeff; Gromoll, Detlef The splitting theorem for manifolds of nonnegative Ricci curvature, J. Differential Geometry, Volume 6 (1971/72), pp. 119-128 | MR | Zbl

[7] Eschenburg, Jost; Heintze, Ernst An elementary proof of the Cheeger-Gromoll splitting theorem, Ann. Global Anal. Geom., Volume 2 (1984) no. 2, pp. 141-151 | DOI | MR | Zbl

[8] Fernández-López, M.; García-Río, E. A remark on compact Ricci solitons, Math. Ann., Volume 340 (2008) no. 4, pp. 893-896 | DOI | MR | Zbl

[9] Gilbarg, David; Trudinger, Neil S. Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 224, Springer-Verlag, Berlin, 1983 | MR | Zbl

[10] Gromov, Mikhael Structures métriques pour les variétés riemanniennes, Textes Mathématiques [Mathematical Texts], 1, CEDIC, Paris, 1981 (Edited by J. Lafontaine and P. Pansu) | MR | Zbl

[11] Gromov, Misha Metric structures for Riemannian and non-Riemannian spaces, Progress in Mathematics, 152, Birkhäuser Boston Inc., Boston, MA, 1999 Based on the 1981 French original [ MR0682063 (85e:53051)], With appendices by M. Katz, P. Pansu and S. Semmes, Translated from the French by Sean Michael Bates | MR | Zbl

[12] Li, Xiang-Dong Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds, J. Math. Pures Appl. (9), Volume 84 (2005) no. 10, pp. 1295-1361 | MR | Zbl

[13] Li, Xue-Mei On extensions of Myers’ theorem, Bull. London Math. Soc., Volume 27 (1995) no. 4, pp. 392-396 | DOI | MR | Zbl

[14] Lichnerowicz, André Variétés riemanniennes à tenseur C non négatif, C. R. Acad. Sci. Paris Sér. A-B, Volume 271 (1970), p. A650-A653 | MR | Zbl

[15] Lott, John Some geometric properties of the Bakry-Émery-Ricci tensor, Comment. Math. Helv., Volume 78 (2003) no. 4, pp. 865-883 | DOI | MR | Zbl

[16] Perelman, G. The entropy forumla for the Ricci flow and its geometric applications (http://arXiv.org/abs/maths/0211159) | Zbl

[17] Qian, Zhongmin Estimates for weighted volumes and applications, Quart. J. Math. Oxford Ser. (2), Volume 48 (1997) no. 190, pp. 235-242 | DOI | MR | Zbl

[18] Schoen, R.; Yau, S.-T. Lectures on differential geometry, Conference Proceedings and Lecture Notes in Geometry and Topology, I, International Press, Cambridge, MA, 1994 (Lecture notes prepared by Wei Yue Ding, Kung Ching Chang [Gong Qing Zhang], Jia Qing Zhong and Yi Chao Xu, Translated from the Chinese by Ding and S. Y. Cheng, Preface translated from the Chinese by Kaising Tso) | MR | Zbl

[19] Wei, Guofang; Wylie, William C. Comparison Geometry for the Bakry-Émery Ricci Tensor (arXiv:math.DG/0706.1120v1)

[20] Wylie, William Complete shrinking Ricci solitons have finite fundamental group, Proc. Amer. Math. Soc., Volume 136 (2008) no. 5, pp. 1803-1806 | DOI | MR | Zbl

[21] Zhu, Shunhui The comparison geometry of Ricci curvature, Comparison geometry (Berkeley, CA, 1993–94) (Math. Sci. Res. Inst. Publ.), Volume 30, Cambridge Univ. Press, Cambridge, 1997, pp. 221-262 | MR | Zbl

Cited by Sources: