In this paper, we prove two generalized versions of the Cheeger-Gromoll splitting theorem via the non-negativity of the Bakry-Émery Ricci curavture on complete Riemannian manifolds.
Dans cet article, nous obtenons deux généralisations du théorème de scindage de Cheeger-Gromoll sur les variétés riemanniennes complètes à courbure de Ricci non-négative au sens de Bakry-Émery.
Keywords: Busemann function, splitting theorem, Bakry-Émery Ricci curvature
Mot clés : fonction de Busemann, théorème de scindage, courbure de Ricci de Bakry-Émery
@article{AIF_2009__59_2_563_0, author = {Fang, Fuquan and Li, Xiang-Dong and Zhang, Zhenlei}, title = {Two generalizations of {Cheeger-Gromoll} splitting theorem via {Bakry-Emery} {Ricci} curvature}, journal = {Annales de l'Institut Fourier}, pages = {563--573}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {59}, number = {2}, year = {2009}, doi = {10.5802/aif.2440}, zbl = {1166.53023}, mrnumber = {2521428}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.2440/} }
TY - JOUR AU - Fang, Fuquan AU - Li, Xiang-Dong AU - Zhang, Zhenlei TI - Two generalizations of Cheeger-Gromoll splitting theorem via Bakry-Emery Ricci curvature JO - Annales de l'Institut Fourier PY - 2009 SP - 563 EP - 573 VL - 59 IS - 2 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.2440/ DO - 10.5802/aif.2440 LA - en ID - AIF_2009__59_2_563_0 ER -
%0 Journal Article %A Fang, Fuquan %A Li, Xiang-Dong %A Zhang, Zhenlei %T Two generalizations of Cheeger-Gromoll splitting theorem via Bakry-Emery Ricci curvature %J Annales de l'Institut Fourier %D 2009 %P 563-573 %V 59 %N 2 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.2440/ %R 10.5802/aif.2440 %G en %F AIF_2009__59_2_563_0
Fang, Fuquan; Li, Xiang-Dong; Zhang, Zhenlei. Two generalizations of Cheeger-Gromoll splitting theorem via Bakry-Emery Ricci curvature. Annales de l'Institut Fourier, Volume 59 (2009) no. 2, pp. 563-573. doi : 10.5802/aif.2440. http://archive.numdam.org/articles/10.5802/aif.2440/
[1] Diffusions hypercontractives, Séminaire de probabilités, XIX, 1983/84 (Lecture Notes in Math.), Volume 1123, Springer, Berlin, 1985, pp. 177-206 | Numdam | MR | Zbl
[2] L’hypercontractivité et son utilisation en théorie des semigroupes, Lectures on probability theory (Saint-Flour, 1992) (Lecture Notes in Math.), Volume 1581, Springer, Berlin, 1994, pp. 1-114 | MR | Zbl
[3] Volume comparison theorems without Jacobi fields, Current trends in potential theory (Theta Ser. Adv. Math.), Volume 4, Theta, Bucharest, 2005, pp. 115-122 | MR
[4] Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 10, Springer-Verlag, Berlin, 1987 | MR | Zbl
[5] An extension of E. Hopf’s maximum principle with an application to Riemannian geometry, Duke Math. J., Volume 25 (1958), pp. 45-56 | DOI | MR | Zbl
[6] The splitting theorem for manifolds of nonnegative Ricci curvature, J. Differential Geometry, Volume 6 (1971/72), pp. 119-128 | MR | Zbl
[7] An elementary proof of the Cheeger-Gromoll splitting theorem, Ann. Global Anal. Geom., Volume 2 (1984) no. 2, pp. 141-151 | DOI | MR | Zbl
[8] A remark on compact Ricci solitons, Math. Ann., Volume 340 (2008) no. 4, pp. 893-896 | DOI | MR | Zbl
[9] Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 224, Springer-Verlag, Berlin, 1983 | MR | Zbl
[10] Structures métriques pour les variétés riemanniennes, Textes Mathématiques [Mathematical Texts], 1, CEDIC, Paris, 1981 (Edited by J. Lafontaine and P. Pansu) | MR | Zbl
[11] Metric structures for Riemannian and non-Riemannian spaces, Progress in Mathematics, 152, Birkhäuser Boston Inc., Boston, MA, 1999 Based on the 1981 French original [ MR0682063 (85e:53051)], With appendices by M. Katz, P. Pansu and S. Semmes, Translated from the French by Sean Michael Bates | MR | Zbl
[12] Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds, J. Math. Pures Appl. (9), Volume 84 (2005) no. 10, pp. 1295-1361 | MR | Zbl
[13] On extensions of Myers’ theorem, Bull. London Math. Soc., Volume 27 (1995) no. 4, pp. 392-396 | DOI | MR | Zbl
[14] Variétés riemanniennes à tenseur C non négatif, C. R. Acad. Sci. Paris Sér. A-B, Volume 271 (1970), p. A650-A653 | MR | Zbl
[15] Some geometric properties of the Bakry-Émery-Ricci tensor, Comment. Math. Helv., Volume 78 (2003) no. 4, pp. 865-883 | DOI | MR | Zbl
[16] The entropy forumla for the Ricci flow and its geometric applications (http://arXiv.org/abs/maths/0211159) | Zbl
[17] Estimates for weighted volumes and applications, Quart. J. Math. Oxford Ser. (2), Volume 48 (1997) no. 190, pp. 235-242 | DOI | MR | Zbl
[18] Lectures on differential geometry, Conference Proceedings and Lecture Notes in Geometry and Topology, I, International Press, Cambridge, MA, 1994 (Lecture notes prepared by Wei Yue Ding, Kung Ching Chang [Gong Qing Zhang], Jia Qing Zhong and Yi Chao Xu, Translated from the Chinese by Ding and S. Y. Cheng, Preface translated from the Chinese by Kaising Tso) | MR | Zbl
[19] Comparison Geometry for the Bakry-Émery Ricci Tensor (arXiv:math.DG/0706.1120v1)
[20] Complete shrinking Ricci solitons have finite fundamental group, Proc. Amer. Math. Soc., Volume 136 (2008) no. 5, pp. 1803-1806 | DOI | MR | Zbl
[21] The comparison geometry of Ricci curvature, Comparison geometry (Berkeley, CA, 1993–94) (Math. Sci. Res. Inst. Publ.), Volume 30, Cambridge Univ. Press, Cambridge, 1997, pp. 221-262 | MR | Zbl
Cited by Sources: