Boissy, Corentin
Labeled Rauzy classes and framed translation surfaces  [ Classes de Rauzy étiquetées et surfaces de translation marquées ]
Annales de l'institut Fourier, Tome 63 (2013) no. 2 , p. 547-572
MR 3112841 | Zbl 06193040 | 1 citation dans Numdam
doi : 10.5802/aif.2769
URL stable : http://www.numdam.org/item?id=AIF_2013__63_2_547_0

Classification:  37E05,  37D40
Mots clés: Échanges d’intervalles, induction de Rauzy, différentielles abéliennes, espace des modules, flot de Teichmüller
Dans cet article, on compare deux définitions de classes de Rauzy. La première a été introduite par Rauzy et a été utilisée en particulier par Veech pour démonter l’ergodicité du flot de Teichmüller. La seconde est plus récente et utilise un «  étiquetage  » des intervalles sous-jacents. Elle a été utilisée récemment dans les preuves de plusieurs résultats majeurs sur le flot de Teichmüller. Les diagrammes de Rauzy obtenus avec la seconde définition sont des revêtements de ceux obtenus avec la première définition. On donne ici une formule donnant le degré de ce revêtement. Cette formule est reliée à un espace des modules de surfaces de translations marquées, qui correspond à des surfaces de translations pour lesquelles on marque des séparatrices horizontales sur la surface. On calcule le nombre de composantes connexes de ces revêtements naturels de l’espace des modules des surfaces de translation. Delecroix a donné récemment le cardinal des classes de Rauzy (réduites). On peut donc en déduire le cardinal des classes de Rauzy marquées.
In this paper, we compare two definitions of Rauzy classes. The first one was introduced by Rauzy and was in particular used by Veech to prove the ergodicity of the Teichmüller flow. The second one is more recent and uses a “labeling” of the underlying intervals, and was used in the proof of some recent major results about the Teichmüller flow. The Rauzy diagrams obtained from the second definition are coverings of the initial ones. In this paper, we give a formula that gives the degree of this covering. This formula is related to moduli spaces of framed translation surfaces, which correspond to surfaces where we label horizontal separatrices on the surface. We compute the number of connected component of these natural coverings of the moduli spaces of translation surfaces. Delecroix has given recently a formula for the cardinality of the (reduced) Rauzy classes. Therefore, we also obtain formula for labeled Rauzy classes.

Bibliographie

[1] Avila, A.; Gouëzel, S.; Yoccoz, J.-C. Exponential mixing for the Teichmüller flow, Publ. Math. IHES, 104 (2006), p. 143-211 Article  Numdam | MR 2264836 | Zbl pre05117096

[2] Avila, A.; Viana, M. Simplicity of Lyapunov spectra: proof of the Zorich-Kontsevich conjecture, Acta Math., 198 (2007) no. 1, p. 1–56 Article  MR 2316268 | Zbl 1143.37001

[3] Boissy, C. Classification of Rauzy classes in the moduli space of quadratic differentials (preprint arXiv:0904.3826 (2009), to appear in Discrete and Continuous Dynamical Systems, series A)

[4] Boissy, C. Degenerations of quadratic differentials on ℂℙ 1 , Geometry and Topology, 12 (2008), p. 1345-1386 Article  MR 2421130 | Zbl 1146.30020

[5] Boissy, C.; Lanneau, E. Dynamics and geometry of the Rauzy-Veech induction for quadratic differentials, Ergodic Theory Dynam. Systems, 29 (2009) no. 3, p. 767–816 Article  MR 2505317 | Zbl 1195.37030

[6] Boissy, C.; Lanneau, E. Pseudo-Anosov homeomorphisms on translation surfaces in hyperelliptic components have large entropy, Geom. Funct. Anal., 22 (2012) no. 1, p. 74–106 Article  MR 2899683 | Zbl pre06029791

[7] Bufetov, A. I. Decay of correlations for the Rauzy-Veech-Zorich induction map on the space of interval exchange transformations and the central limit theorem for the Teichmüller flow on the moduli space of abelian differentials, J. Amer. Math. Soc., 19 (2006) no. 3, p. 579–623 Article  MR 2220100 | Zbl 1100.37002

[8] Danthony, C.; Nogueira, A. Measured foliations on nonorientable surfaces, Ann. Sci. École Norm. Sup. (4), 23 (1990), p. 469–494 Numdam | MR 1055445 | Zbl 0722.57010

[9] Delecroix, V. Cardinality of Rauzy classes (preprint arXiv:1106.0807 (2011))

[10] Eskin, A.; Masur, H.; Zorich, A. Moduli spaces of Abelian differentials: the principal boundary, counting problems, and the Siegel–Veech constants, Publ. Math. IHES, 97 (2003), p. 61–179 Article  Numdam | MR 2010740 | Zbl 1037.32013

[11] Hubbard, J.; Masur, H. Quadratic differentials and foliations, Acta Math., 142 (1979), p. 221–274 Article  MR 523212 | Zbl 0415.30038

[12] Kerckhoff, S. P. Simplicial systems for interval exchange maps and measured foliations, Ergodic Theory Dynam. Systems, 5 (1985) no. 2, p. 257–271 Article  MR 796753 | Zbl 0597.58024

[13] Kontsevich, M.; Zorich, A. Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math., 153 (2003) no. 3, p. 631–678 Article  MR 2000471 | Zbl 1087.32010

[14] Marchese, L. Khinchin type condition for translation surfaces and asymptotic laws for the Teichmüller flow (preprint (2010)) Zbl pre06138447

[15] Marmi, S.; Moussa, P.; Yoccoz, J.-C. The cohomological equation for Roth type interval exchange transformations, Journal of the Amer. Math. Soc., 18 (2005), p. 823–872 Article  MR 2163864 | Zbl 1112.37002

[16] Masur, H. Interval exchange transformations and measured foliations, Ann of Math., 141 (1982), p. 169–200 Article  MR 644018 | Zbl 0497.28012

[17] Rauzy, G. Échanges d’intervalles et transformations induites, Acta Arith., 34 (1979), p. 315–328 MR 543205 | Zbl 0414.28018

[18] Stein, W. A. Et Al Sage Mathematics Software (Version 4.2.1), The Sage Development Team (2009) (http://www.sagemath.org)

[19] Veech, W. Gauss measures for transformations on the space of interval exchange maps, Ann. of Math. (2), 115 (1982) no. 1, p. 201–242 Article  MR 644019 | Zbl 0486.28014