The Yukawa quantum field theory : linear N τ bound, locally Fock property
Annales de l'I.H.P. Physique théorique, Volume 30 (1979) no. 3, p. 159-192
@article{AIHPA_1979__30_3_159_0,
     author = {Osipov, Edward P.},
     title = {The Yukawa quantum field theory : linear $N\_\tau $ bound, locally Fock property},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     publisher = {Gauthier-Villars},
     volume = {30},
     number = {3},
     year = {1979},
     pages = {159-192},
     mrnumber = {546185},
     language = {en},
     url = {http://www.numdam.org/item/AIHPA_1979__30_3_159_0}
}
Osipov, Edward P. The Yukawa quantum field theory : linear $N_\tau $ bound, locally Fock property. Annales de l'I.H.P. Physique théorique, Volume 30 (1979) no. 3, pp. 159-192. http://www.numdam.org/item/AIHPA_1979__30_3_159_0/

[1] J. Glimm and A. Jaffe, The λφ42 Quantum Field Theory without cut-offs. III. The Physical Vacuum, Acta Math., t. 125, 1970, p. 203-260. | MR 269234

[2] J. Glimm and A. Jaffe, Quantum Field Models, in Statistical Mechanics and Quantum Field Theory, Les Houches, 1970, ed. C. De Witt and R. Stora, Gordon and Breach, New York, 1971, p. 1-108.

[3] R. Schrader, Yukawa quantum field theory in two space-time dimensions without cut-offs, Ann. Phys. (N. Y.), t. 70, 1972, p. 412-457. | MR 302088

[4] E. Seiler and B. Simon, Bounds in the Yukawa2 quantum field theory: upper bound on the pressure, hamiltonian bound and linear lower bound, Commun. Math. Phys., t. 45, 1975, p. 99-114. | MR 413886

[5] E. Seiler and B. Simon, Nelson's symmetry and all that in the Yukawa2 and ø43 field theories, Ann. Phys. (N. Y.), t. 97, 1976, p. 470-518. | MR 438960

[6] J. Magnen and R. Seneor, The Wightman axioms for the weakly coupled Yukawa model in two dimensions, Commun. Math. Phys., t. 51, 1976, p. 297-313; Preprint de l'École Polytechnique, octobre 1975. | MR 434224

[7] J. Glimm and A. Jaffe, The energy-momentum spectrum and vacuum expectation values in quantum field theory, II, Commun. Math. Phys., t. 22, 1971, p. 1-22. | MR 295709

[8] P.T. Matthews and A. Salam, The Green's functions of quantized fields, Nuovo Cimento, t. 12, 1954, p. 563-565. | Zbl 0056.44306

[9] P.T. Matthews and A. Salam, Propagators of quantized fields, Nuovo Cimento, t. 2, 1955, p. 120-134. | MR 75096 | Zbl 0067.44801

[10] E. Seiler, Schwinger functions for the Yukawa model in two dimensions with space-time cutoff, Commun. Math. Phys., t. 42, 1975, p. 163-182. | MR 376022

[11] E. Seiler and B. Simon, On finite mass renormalizations in the two-dimensional Yukawa model, J. Math. Phys., t. 16, 1975, p. 2289-2293. | MR 403484

[12] J. Dimock and J. Glimm, Measures on the Schwartz distribution space and application to P(φ)2 field theories, Adv. Math., t. 12, 1974, p. 58-83. | MR 349171 | Zbl 0313.28015

[13] O.A. Mcbryan, Volume dependence of Schwinger functions in the Yukawa2 quantum field theory, Commun. Math. Phys., t. 45, 1975, p. 279-294. | MR 389075

[14] B. Simon, The P(φ)2 euclidean (quantum) field theory, Princeton University Press, 1974. | MR 489552

[15] G.M. Molchan, The characterization of gaussian fields with the Markov property (in Russian), Dokladi AN SSSR, t. 197, 1971, p. 784-787. | MR 297018 | Zbl 0236.60031

[16] I.M. Gelfand and G.E. Shilov, Generalized functions and their applications. vol. I (In Russian), Fizmatgiz, Moscow, 1959.

[17] J. Glimm, A. Jaffe and T. Spencer, The particle structure of the weakly coupled P(φ)2 model and other applications of high temperature expansions. Part II. In Constructive quantum field theory, ed. G. Velo and A. S. Wightman, Lecture Notes in Physics, vol. 25, Springer-Verlag, Berlin-Heidelberg-New York, 1973. | MR 395513

[18] I.C. Gohberg and M.G. Krein, Introduction to the theory of linear nonselfadjoint operators (In Russian), Nauka, Moscow, 1965 and Translations of mathematical monographs, vol. 18, Amer. Math. Soc., Providence, R. I., 1969. | MR 246142 | Zbl 0181.13504

[19] T. Kato, Perturbation theory for linear operators, Springer, Berlin-Heidelberg- New York, 1966. | MR 203473 | Zbl 0148.12601

[20] J. Glimm and A. Jaffe, The λ(φ)4)2 quantum field theory without cutoffs. IV. Perturbation of the hamiltonian, J. Math. Phys., t. 13, 1972, p. 1568-1584. | MR 317683

[21] N. Dunford and J. Schwartz, Linear Operators, vol. II, Interscience, New York, 1963. | MR 188745 | Zbl 0128.34803

[22] A. Cooper and L. Rosen, The weakly coupled Yukawa2 field theory: cluster expansion and Wightman axioms, Trans. Amer. Math. Soc., t. 234, 1977, p. 1-88. | MR 468872

[23] L. Rosen, Construction of the Yukawa2 field theory with a large external field, J. Math. Phys., t. 18, 1977, p. 894-897. | MR 441147

[24] E.P. Osipov, Connection between the spectrum condition and the Lorentz invariance of the Yukawa2 quantum field theory, Commun. Math. Phys., t. 57, 1977, p. 111-116. | MR 503217

[25] B. Simon, Notes on infinite determinants of Hilbert space operators, Adv. Math., t. 24, 1977, p. 244-273. | MR 482328 | Zbl 0353.47008

[26] L. Gross, On the formula of Matthews and Salam, J. Funct. Anal., t. 25, 1977, p. 162-209. | MR 459403 | Zbl 0414.47010

[27] E.P. Heifets and E.P. Osipov, The energy-momentum spectrum in the Yukawa2 quantum field theory, Commun. Math. Phys., t. 57, 1977, p. 31-50. | MR 462337

[28] E.P. Osipov, The Yukawa2 quantum field theory: linear Nτ bound, locally Fock property, Preprint TPh-95, Institute for mathematics, Novosibirsk, 1977 and Ann. Inst. H. Poincaré, t. 30A, 1979, p. 193-206. | Numdam