The Yukawa quantum field theory : the Matthews-Salam formulas
Annales de l'I.H.P. Physique théorique, Volume 30 (1979) no. 3, p. 193-206
@article{AIHPA_1979__30_3_193_0,
     author = {Osipov, Edward P.},
     title = {The Yukawa quantum field theory : the Matthews-Salam formulas},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     publisher = {Gauthier-Villars},
     volume = {30},
     number = {3},
     year = {1979},
     pages = {193-206},
     mrnumber = {546186},
     language = {en},
     url = {http://www.numdam.org/item/AIHPA_1979__30_3_193_0}
}
Osipov, Edward P. The Yukawa quantum field theory : the Matthews-Salam formulas. Annales de l'I.H.P. Physique théorique, Volume 30 (1979) no. 3, pp. 193-206. http://www.numdam.org/item/AIHPA_1979__30_3_193_0/

[1] P.T. Matthews and A. Salam, The Green's functions of quantized fields, Nuovo Cimento, t. 12, 1954, p. 563-565. | Zbl 0056.44306

[2] P.T. Matthews and A. Salam, Propagators of quantized fields, Nuovo Cimento, t. 2, 1955, p. 120-134. | MR 75096 | Zbl 0067.44801

[3] N.N. Bogolubov, On the representation of the Green-Schwinger functions with the help of the functional integrals (in Russian), Doklady Akad. Nauk SSSR, t. 99, 1954, p. 225-226. | MR 67768 | Zbl 0056.22105

[4] N.N. Bogolubov and D.V. Shirkov, Introduction to the theory of quantized fields, Interscience Publishers, New York, 1959. | MR 110471 | Zbl 0088.21701

[5] J. Glimm and A. Jaffe, Quantum field models, in Statistical mechanics and quantum field theory, Les Houches, 1970, ed. by C. De Witt and R. Stora, Gordon and Breach, New York, 1971, p. 1-108.

[6] R. Schrader, Yukawa quantum field theory in two space-time dimensions without cut-offs, Ann. Phys. (N. Y.), t. 70, 1972, p. 412-457. | MR 302088

[7] E. Seiler, Schwinger functions for the Yukawa model in two dimensions with space-time cut-off, Commun. Math. Phys., t. 42, 1975, p. 163-182. | MR 376022

[8] E. Seiler and B. Simon, Bounds in the Yukawa2 quantum field theory: upper bound on the pressure, Hamiltonian bound and linear lower bound, Commun. Math. Phys., t. 45, 1975, p. 99-114. | MR 413886

[9] O.A. Mcbryan, Volume dependence of Schwinger functions in the Yukawa2 quantum field theory, Commun. Math. Phys., t. 45, 1975, p. 279-294. | MR 389075

[10] D. Brydges, Boundedness below for fermion model theories. Part I, J. Math. Phys., t. 16, 1975, p. 1649-1661. | MR 376009

[11] D. Brydges, Boundedness below for fermion model theories. Part II. The linear lower bound, Commun. Math. Phys., t. 47, 1976, p. 1-24. | MR 406193

[12] E. Seiler and B. Simon, Nelson's symmetry and all that in the Yukawa2 and φ43 field theories, Ann. Phys. (N. Y.), t. 97, 1976, p. 470-518. | MR 438960

[13] J. Magnen and R. Seneor, The Wightman axioms for the weakly coupled Yukawa model in two dimensions, Commun. Math. Phys., t. 51, 1976, p. 297-313. | MR 434224

[14] A. Cooper and L. Rosen, The weakly coupled Yukawa2 field theory: cluster expansion and Wightman axioms, Trans. Amer. Math. Soc., t. 234, 1977, p. 1-88. | MR 468872

[15] L. Rosen, Construction of the Yukawa2 field theory with a large external field J. Math. Phys., t. 18, 1977, p. 894-897. | MR 441147

[16] L. Gross, On the formula of Matthews and Salam, J. Funct. Anal., t. 25, 1977, p. 162-209. | MR 459403 | Zbl 0414.47010

[17] E.P. Osipov, The Yukawa2 quantum field theory: linear Nτ bound, locally Fock property, Ann. Inst. H. Poincaré, t. 30A, 1979, p. 159-192. | Numdam

[18] E.P. Osipov, The Yukawa2 quantum field theory: various results (in Russian), Preprint TPh-99, Institute for Mathematics, Novosibirsk, 1978.

[19] X. Fernique, Intégrabilité des vecteurs gaussiens, C. R. Acad. Sci. Paris Sér. A, t. 270, 1970, p. 1698-1699. | MR 266263 | Zbl 0206.19002

[20] X. Fernique, Régularité des trajectoires des fonctions aléatoires gaussiennes, in École d'Été de Probabilités de Saint-Flour, IV. 1974, édité par P.-L. Hennequin, Lecture Notes in Mathematics, 480, Springer-Verlag, Berlin, Heidelberg, New York, 1975, p. 2-97. | MR 413238 | Zbl 0331.60025

[21] B. Simon, The P(φ)2 Euclidean (quantum) field theory, Princeton University Press, Princeton, 1974. | MR 489552

[22] G.M. Molchan, The characterization of Gaussian fields with the Markov property (in Russian), Doklady Akad. Nauk SSSR, t. 197, 1971, p. 784-787. | MR 297018 | Zbl 0236.60031

[23] T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin, Heidelberg, New York, 1966. | MR 203473 | Zbl 0148.12601

[24] B. Simon, Notes on infinite determinants of Hilbert space operators, Adv. Math., t. 24, 1977, p. 244-273. | MR 482328 | Zbl 0353.47008