Poincaré renormalized forms
Annales de l'I.H.P. Physique théorique, Volume 70 (1999) no. 6, pp. 461-514.
@article{AIHPA_1999__70_6_461_0,
     author = {Gaeta, Giuseppe},
     title = {Poincar\'e renormalized forms},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     pages = {461--514},
     publisher = {Gauthier-Villars},
     volume = {70},
     number = {6},
     year = {1999},
     mrnumber = {1693592},
     zbl = {0994.34024},
     language = {en},
     url = {http://archive.numdam.org/item/AIHPA_1999__70_6_461_0/}
}
TY  - JOUR
AU  - Gaeta, Giuseppe
TI  - Poincaré renormalized forms
JO  - Annales de l'I.H.P. Physique théorique
PY  - 1999
SP  - 461
EP  - 514
VL  - 70
IS  - 6
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/item/AIHPA_1999__70_6_461_0/
LA  - en
ID  - AIHPA_1999__70_6_461_0
ER  - 
%0 Journal Article
%A Gaeta, Giuseppe
%T Poincaré renormalized forms
%J Annales de l'I.H.P. Physique théorique
%D 1999
%P 461-514
%V 70
%N 6
%I Gauthier-Villars
%U http://archive.numdam.org/item/AIHPA_1999__70_6_461_0/
%G en
%F AIHPA_1999__70_6_461_0
Gaeta, Giuseppe. Poincaré renormalized forms. Annales de l'I.H.P. Physique théorique, Volume 70 (1999) no. 6, pp. 461-514. http://archive.numdam.org/item/AIHPA_1999__70_6_461_0/

[1] V.I. Arnold, Geometrical Methods in the Theory of Differential Equations, Springer, Berlin, 1988. | MR

[2] V.I. Arnold and Yu.S. Il'Yashenko, Ordinary differential equations, in: D.V. Anosov and V.I. Arnold (Eds.), Encyclopaedia of Mathematical Sciences, Vol. I, Dynamical Systems I, Springer, Berlin, 1988, pp. 1-148. | MR | Zbl

[3] A.D. Bruno, Local Methods in Nonlinear Differential Equations, Springer, Berlin, 1989. | MR | Zbl

[4] M. Kummer, Nuovo Cimento B 1 (1971) 123. | MR

[5] M. Kummer, Comm. Math. Phys. 48 (1976) 53. | MR | Zbl

[6] J.C. Van Der Meer, The Hamiltonian Hopf Bifurcation, Lecture Notes in Math., Vol. 1160, Springer, Berlin, 1985. | MR | Zbl

[7] H.W. Broer, Bifurcations of singularities in volume preserving vector fields, Ph.D. Thesis, Groningen, 1979; Formal normal form theorems for vector fields and some consequences for bifurcations in the volume preserving case, in: Lecture Notes Math., Vol. 898, Springer, Berlin, 1981. | MR

[8] A. Baider and R.C. Churchill, Proc. Roy. Soc. Edinburgh A 108 (1988) 27. | Zbl

[9] A. Baider, J. Diff. Eqs. 78 (1989) 33. | MR | Zbl

[10] G. Gallavotti, Perturbation theory, mp-arc 93-318.

[11] G.B. Enettin, L. Galgani and A. Giorgilli, Nuovo Cimento B 79 (1984) 201.

[12] Yu.A. Mitropolsky and A.K. Lopatin, Nonlinear Mechanics, Groups and Symmetry, Kluwer, Dordrecht, 1995. | Zbl

[13] C. Elphick, E. Tirapegui, M.E. Brachet, P. Coullet and G. Iooss, Physica D 29 (1987) 95. | Zbl

[14] G. Iooss and M. Adelmeyer, Topics in Bifurcation Theory and Applications, World Scientific, Singapore, 1992. | MR | Zbl

[15] V. Bargmann, Comm. Pure Appl. Math. 14 (1961) 187. | MR | Zbl

[16] G. Cicogna and G. Gaeta, J. Phys. A: Math. Gen. 27 (1994) 461; 27 (1994) 7115. | Zbl

[17] L.D. Landau and I.M. Lifshitz, Quantum Mechanics, Pergamon, London, 1959. | Zbl

[18] L.M. Markhashov, J. Appl. Math. Mech. 38 (1974) 788. | MR | Zbl

[19] A.D. Bruno and S. Walcher, J. Math. Anal. Appl. 183 (1994) 571; see also A.D. Bruno, Trans. Moscow Math. Soc. 25 (1971) 131; 26 (1971) 199. | MR | Zbl

[20] G. Cicogna, J. Math. Anal. Appl. 199 (1996) 243; see also J. Phys. A: Math. Gen. 28 (1995) L179; 30 (1997) 6021; Nuovo Cim. B 113 (1998) 1425. | MR | Zbl

[21] C.L. Siegel and J.K. Moser, Lectures on Celestial Mechanics, Springer, Berlin, 1955. (Reprinted in Classics in Mathematics, 1995.) | MR

[22] E. Forrest and D. Murray, Physica D 74 (1994) 181.

[23] G. Cicogna and G. Gaeta, Symmetry and perturbation theory for dynamical systems, Preprint IHES-P-97-12 (1997); revised and enlarged version to appear in Lect. Notes Phys., Springer. | MR

[24] G.R. Belitsky, Russ. Math. Surveys 33 (1978) 107; Funct. Anal. Appl. 20 (1986) 253.

[25] M. Golubitsky, D. Schaeffer and I. Stewart, Singularities and Groups in Bifurcation Theory, Vol. II, Springer, New York, 1988. | MR | Zbl