Théorème ergodique local dans L p (1<p<)
Annales de l'I.H.P. Probabilités et statistiques, Tome 17 (1981) no. 2, p. 181-184
@article{AIHPB_1981__17_2_181_0,
     author = {\'Emilion, R.},
     title = {Th\'eor\`eme ergodique local dans $L\_p \, (1 < p < \infty )$},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     publisher = {Gauthier-Villars},
     volume = {17},
     number = {2},
     year = {1981},
     pages = {181-184},
     zbl = {0466.60038},
     language = {fr},
     url = {http://http://www.numdam.org/item/AIHPB_1981__17_2_181_0}
}
Émilion, R. Théorème ergodique local dans $L_p \, (1 < p < \infty )$. Annales de l'I.H.P. Probabilités et statistiques, Tome 17 (1981) no. 2, pp. 181-184. http://www.numdam.org/item/AIHPB_1981__17_2_181_0/

[1] Akcoglu-Krengel, A differentiation theorem in Lp, Math. Z., t. 169, 1979. | Zbl 0394.47021

[2] Y. Kubokawa, A local ergodic theorem for semi-group on Lp Tohoku. Math. Journal, t. 26, 1974, p. 411-422. | MR 352405 | Zbl 0289.47025

[3] S.A. Mac. GRATH, An abelian ergodic theorem for semi-group in Lp spaces. Proceed. Amer. Society, t. 54, 1976, p. 231-236. | MR 394250 | Zbl 0301.47009

[4] T. Terrel, Local ergodic theorems for n-parameters semi-groups of operators. Contribution to ergodic and Prob. Theory. Springer-Verlag, N. Y., 1970. | MR 268357 | Zbl 0204.45406