Critical branching diffusions : proper normalization and conditioned limit
Annales de l'I.H.P. Probabilités et statistiques, Volume 17 (1981) no. 3, p. 251-274
@article{AIHPB_1981__17_3_251_0,
     author = {Hering, H. and Hoppe, F. M.},
     title = {Critical branching diffusions : proper normalization and conditioned limit},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     publisher = {Gauthier-Villars},
     volume = {17},
     number = {3},
     year = {1981},
     pages = {251-274},
     zbl = {0467.60075},
     mrnumber = {631242},
     language = {en},
     url = {http://www.numdam.org/item/AIHPB_1981__17_3_251_0}
}
Hering, H.; Hoppe, F. M. Critical branching diffusions : proper normalization and conditioned limit. Annales de l'I.H.P. Probabilités et statistiques, Volume 17 (1981) no. 3, pp. 251-274. http://www.numdam.org/item/AIHPB_1981__17_3_251_0/

[1] M.I. Goldstein and F.M. Hoppe, Critical multitype branching processes with infinite variance. J. Math. Anal. Appl., t. 65, p. 676-686. | MR 510478 | Zbl 0408.60082

[2] M.I. Goldstein and F.M. Hoppe, Necessary conditions for normed convergence of critical multitype Bienaymé-Galton-Watson processes without variance. J. Multivar. Anal., t. 8, 1978, p. 55-62. | MR 483051 | Zbl 0382.60092

[3] H. Hering, Uniform primitivity of semigroups generated by perturbed elliptic differential operators. Math. Proc. Camb. Phil. Soc., t. 83, 1978, p. 261-268. | MR 467044 | Zbl 0374.47021

[4] H. Hering, Minimal moment conditions in the limit theory for general Markov branching processes. Ann. Inst. Henri Poincaré, Sér. B, t. 13, 1978, p. 299-319. | Numdam | MR 488340 | Zbl 0391.60077

[5] H. Hering, Multigroup branching diffusions. Advances in Probability, t. 5, 1978, p. 177-217. | MR 517535 | Zbl 0408.60084

[6] N. Ikeda, M. Nagasawa and S. Watanabe, Branching Markov processes I, II, III, J. Math. Kyoto Univ., t. 8, 1968, p. 233-278, p. 365-410; t. 9, 1969, p. 95-160. | MR 232439 | Zbl 0233.60068

[7] E.E. Kohlbecker, Weak asymptotic properties of partitions. Trans. Amer. Math. Soc., t. 88, 1958, p. 346-365. | MR 95808 | Zbl 0173.04203

[8] J. Lamperti, An occupation time theorem for a class of stochastic processes, Trans. Amer. Math. Soc., t. 88, 1958, p. 380-387. | MR 94863 | Zbl 0228.60046

[9] H. Rubin and D. Vere-Jones, Domain of attraction for the subcritical Galton-Watson branching process. J. Appl. Prob., t. 5, 1968, p. 216-219. | MR 228074 | Zbl 0181.20601

[10] T. Savits, The explosion problem for branching Markov process. Osaka J. Math., t. 6, 1969, p. 375-395. | MR 282426 | Zbl 0216.47104

[11] E. Seneta, Regularly Varying Functions. Springer Lecture Notes in Mathematics, New York, 1976, p. 508. | MR 453936 | Zbl 0324.26002

[12] R.S. Slack, A branching process with mean one and possibly infinite variance. Z. Wahrsch., t. 9, 1968, p. 139-145. | MR 228077 | Zbl 0164.47002

[13] R.S. Slack, Further notes on branching processes with mean one. Z. Wahrsch., t. 25, 1972, p. 31-38. | MR 331539 | Zbl 0236.60056

[14] V.A. Vatutin, A limit theorem for a critical Bellman-Harris branching process with several types of particles and infinite second moments. Theor. Probability Appl., t. 23, 1978, p. 776-778. | MR 516277 | Zbl 0422.60062

[15] V.M. Zolotarev, More exact statements of several theorems in the theory of branching processes. Theor. Probability Appl., t. 2, 1957, p. 245-253. | MR 96321 | Zbl 0089.34202