@article{AIHPB_1996__32_2_231_0, author = {Castell, Fabienne and Gaines, Jessica}, title = {The ordinary differential equation approach to asymptotically efficient schemes for solution of stochastic differential equations}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {231--250}, publisher = {Gauthier-Villars}, volume = {32}, number = {2}, year = {1996}, mrnumber = {1386220}, zbl = {0851.60054}, language = {en}, url = {http://archive.numdam.org/item/AIHPB_1996__32_2_231_0/} }
TY - JOUR AU - Castell, Fabienne AU - Gaines, Jessica TI - The ordinary differential equation approach to asymptotically efficient schemes for solution of stochastic differential equations JO - Annales de l'I.H.P. Probabilités et statistiques PY - 1996 SP - 231 EP - 250 VL - 32 IS - 2 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPB_1996__32_2_231_0/ LA - en ID - AIHPB_1996__32_2_231_0 ER -
%0 Journal Article %A Castell, Fabienne %A Gaines, Jessica %T The ordinary differential equation approach to asymptotically efficient schemes for solution of stochastic differential equations %J Annales de l'I.H.P. Probabilités et statistiques %D 1996 %P 231-250 %V 32 %N 2 %I Gauthier-Villars %U http://archive.numdam.org/item/AIHPB_1996__32_2_231_0/ %G en %F AIHPB_1996__32_2_231_0
Castell, Fabienne; Gaines, Jessica. The ordinary differential equation approach to asymptotically efficient schemes for solution of stochastic differential equations. Annales de l'I.H.P. Probabilités et statistiques, Volume 32 (1996) no. 2, pp. 231-250. http://archive.numdam.org/item/AIHPB_1996__32_2_231_0/
[1] Formule de Taylor stochastique et développement asymptotique d'intégrales de Feynmann, in Séminaire de Probabilités XVI, Supplément: Géométrie différentielle stochastique, Springer-Verlag, 1980/81, pp. 237-284. | Numdam | MR | Zbl
,[2] On the connection between the Malliavin covariance matrix and Hörmander's condition, Journal of Functional Analysis, Vol. 96, 1991, pp. 219-255. | MR | Zbl
,[3] Flots et séries de Taylor stochastiques, Probab. Theory Related Fields, Vol. 81, 1989, pp. 29-77. | MR | Zbl
,[4] Asymptotic expansion of stochastic flows, Probab. Theory Related Fields, Vol. 96, 1993, pp. 225-239. | MR | Zbl
,[5] An efficient approximation for a class of stochastic differential equations, in Advances in filtering and optimal stochastic control, Proceedings of IFIP-WG7/1 Working Conference, Cocoyoc, Mexico, 1982, W. H. Fleming and L. G. Gorostiza, eds., no. 42 in Lecture Notes in Control and Information Sciences, Springer-Verlag, Berlin, 1982. | MR | Zbl
,[6] The maximum rate of convergence of discrete approximations for stochastic differential equations, in Stochastic Differential Systems, B. Grigelionis, ed., no. 25 in Lecture Notes in Control and Information Sciences, Springer-Verlag, Berlin, 1980. | MR
and ,[7] The algebra of iterated stochastic integrals. To appear in Stochastics and Stochastic Reports. | MR | Zbl
,[8] Random generation of stochastic area integrals. To appear in SIAM J. of Applied Math. | MR | Zbl
and ,[9] Série de Taylor stochastique et formule de Campbell-Haussdorff, d'après Ben Arous, in Séminaire de Probabilités XXV, J. Azema, P. A. Meyer, and M. Yor, eds., no. 1485 in Lecture Notes in Mathematics, Springer-Verlag, 1991/92, pp. 579-586. | Numdam | MR | Zbl
,[10] Stratonovich and Itô stochastic Taylor expansions, Math. Nachr., Vol. 151, 1991, pp. 33-50. | MR | Zbl
and ,[11] Numerical Solution of Stochastic Differential Equations, Vol. 23 of Applications of Mathematics, Springer-Verlag, 1992. | MR | Zbl
and ,[12] An asymptotically efficient difference formula for solving stochastic differential equations, Stochastics, Vol. 19, 1986, pp. 175-206. | MR | Zbl
,[13] Asymptotically efficient Runge-Kutta methods for a class of Itô and Stratonovich equations, SIAM J. of Applied Mathematics, Vol. 51, 1991, pp. 542-567. | MR | Zbl
,[14] Discretization and simulation of stochastic differential equations, Acta Appl. Math., Vol. 3, 1985, pp. 23-47. | MR | Zbl
and ,[15] Diffusions, Markov Processes and Martingales 2, Itô Calculus, John Wiley and Sons, 1987. | MR | Zbl
and ,[16] Simulation and numerical analysis of stochastic differential systems: A review, Tech. Report 1313, INRIA, 1990.
,