Rough large deviation estimates for the optimal convergence speed exponent of generalized simulated annealing algorithms
Annales de l'I.H.P. Probabilités et statistiques, Tome 32 (1996) no. 3, pp. 299-348.
@article{AIHPB_1996__32_3_299_0,
     author = {Trouv\'e, Alain},
     title = {Rough large deviation estimates for the optimal convergence speed exponent of generalized simulated annealing algorithms},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {299--348},
     publisher = {Gauthier-Villars},
     volume = {32},
     number = {3},
     year = {1996},
     mrnumber = {1387393},
     zbl = {0853.60029},
     language = {en},
     url = {http://archive.numdam.org/item/AIHPB_1996__32_3_299_0/}
}
TY  - JOUR
AU  - Trouvé, Alain
TI  - Rough large deviation estimates for the optimal convergence speed exponent of generalized simulated annealing algorithms
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 1996
SP  - 299
EP  - 348
VL  - 32
IS  - 3
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/item/AIHPB_1996__32_3_299_0/
LA  - en
ID  - AIHPB_1996__32_3_299_0
ER  - 
%0 Journal Article
%A Trouvé, Alain
%T Rough large deviation estimates for the optimal convergence speed exponent of generalized simulated annealing algorithms
%J Annales de l'I.H.P. Probabilités et statistiques
%D 1996
%P 299-348
%V 32
%N 3
%I Gauthier-Villars
%U http://archive.numdam.org/item/AIHPB_1996__32_3_299_0/
%G en
%F AIHPB_1996__32_3_299_0
Trouvé, Alain. Rough large deviation estimates for the optimal convergence speed exponent of generalized simulated annealing algorithms. Annales de l'I.H.P. Probabilités et statistiques, Tome 32 (1996) no. 3, pp. 299-348. http://archive.numdam.org/item/AIHPB_1996__32_3_299_0/

[1] R. Azencott, A common large deviation framework for sequential and parallel annealing. In R. Azencott et al., editors, Simulated annealing: Parallelization techniques, chapter 2, Willey and Sons, 1992, pp. 11-23. | MR | Zbl

[2] O. Catoni, Rough large deviation estimates for simulated annealing. Application to exponential schedules, Ann. Probab., Vol. 20, 1992, pp. 1109-1146. | MR | Zbl

[3] T.-S. Chiang and Y. Chow, A limit theorem for a class of inhomogeneous markov processes, Ann. Probab., 1989. | MR | Zbl

[4] J.-D. Deuschel and C. Mazza, L2 convergence of time non-homogeneous markov processes: I. spectral estimates, Université de Fribourg, Institut de Mathématiques, preprint (to appear in the Ann. of Appl. Prob.), 1992. | MR | Zbl

[5] M.I. Freidlin and A.D. Wentzell, Random Pertubations of Dynamical Systems, Vol. 260, Springer-Verlag, 1984. | MR | Zbl

[6] D. Geman, Random fields and inverse problem in imaging. In École d'Été de probabilités de Saint-Flour XVIII, Springer-Verlag, 1990. | MR | Zbl

[7] F. Götze, Rate of convergence of simulated annealing processes, Preprint, 1992.

[8] B. Hajek, Cooling schedule for optimal annealing, Math. Oper. Res., Vol. 13, 1988, pp. 311-329. | MR | Zbl

[9] R. Holley and D. Strook, Annealing via sobolev inequalities, Comm. Math. Phys., Vol. 115, 1988, pp. 553-559. | MR | Zbl

[10] C.-R. Hwang and S.-J. Sheu, Singular perturbed markov chains and exact behaviors of simulated annealing process, J. Theoret. Probab., Vol. 5(2), 1992, pp. 223-249. | MR | Zbl

[11] S. Ingrassia, On the rate of convergence of the metropolis algorithm and gibbs sampler by geometric bounds, to appear in Annals of Applied Probability, 1993. | MR | Zbl

[12] S. Kirkpatrick, C. Gelatt and M. Vecchi, Optimization by simulated annealing, Sciense, Vol. 220, 1983, pp. 671-680. | MR

[13] L. Miclo, Recuit simulé sans potentiel sur un ensemble fini, Séminaire de Probabilités, Vol. 26, 1992. | Numdam | MR | Zbl

[14] A. Trouvé, , Asymptotical behavior of several interacting annealing processes, Preprint, 1993. | MR

[15] A. Trouvé, Parallélisation massive du recuit simulé, PhD thesis, Université d'Orsay, Jan. 1993.

[16] A. Trouvé, Cycle decompositions and simulated annealing, Rapport de recherche du LMENS, to appear in SIAM J. Control Opt., 1996. | MR | Zbl