Interface for one-dimensional random Kac potentials
Annales de l'I.H.P. Probabilités et statistiques, Volume 33 (1997) no. 5, p. 559-590
@article{AIHPB_1997__33_5_559_0,
     author = {Bodineau, Thierry},
     title = {Interface for one-dimensional random Kac potentials},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     publisher = {Gauthier-Villars},
     volume = {33},
     number = {5},
     year = {1997},
     pages = {559-590},
     zbl = {0893.60014},
     mrnumber = {1473566},
     language = {en},
     url = {http://www.numdam.org/item/AIHPB_1997__33_5_559_0}
}
Bodineau, Thierry. Interface for one-dimensional random Kac potentials. Annales de l'I.H.P. Probabilités et statistiques, Volume 33 (1997) no. 5, pp. 559-590. http://www.numdam.org/item/AIHPB_1997__33_5_559_0/

[1] P. Baldi, Large deviations and stochastic homogenization, Ann. Mat. Pura Applic., 132, 1988. | MR 964508 | Zbl 0654.60024

[2] T. Bodineau, Interface in a one-dimensional Ising spin system, Stoch. Proc. Appl., 61, 1996, pp. 1-23. | MR 1378846 | Zbl 0849.60091

[3] A. Bovier, V. Gayard and P. Picco, Large deviation principles for the Hopfield model and the Kac-Hopfield model., Prob. Theory Relat. Fields, 101, 1995, pp. 511-546. | MR 1327224 | Zbl 0826.60090

[4] A. Bovier, V. Gayard and P. Picco, Distribution of overlap profiles in the one-dimensional Kac-Hopfield model. Preprint 1996.

[5] M. Cassandro, E. Corlandi and E. Presutti, Interfaces and typical Gibbs configurations for one-dimensional Kac potentials, Prob. Theo. Relat. Fields, 96, 1993, pp. 57-96. | MR 1222365 | Zbl 0791.60096

[6] F. Comets, Large deviation estimates for a conditional probability distribution. Applications to random interaction Gibbs measures., Prob. Theo. Relat. Fields, 80, 1989, pp. 407-432. | MR 976534 | Zbl 0638.60037

[7] J.D. Deuschel and D. Stroock, Large deviations, San Diego, Academic Press, 1989. | MR 997938 | Zbl 0705.60029

[8] T. Eisele and R. Ellis, Symmetry breaking and random walks for magnetic systems on a circle, Z wahr. Verw. Geb., 63, 1983, pp. 297-348. | MR 705628 | Zbl 0494.60097

[9] R. Ellis, Entropy large deviations and stastical mechanics, Springer-Verlag, 1985. | MR 793553 | Zbl 0566.60097

[10] M.I. Freidlin and A.D. Wentzell, Random perturbations of dynamical systems, Springer-Verlag, 1983. | MR 1652127 | Zbl 0522.60055

[11] A. Galves, E. Olivieri and M.E. Vares, Metastability for a class of dynamical systems subject to small random perturbations, Ann. Prob., 1987, 87, pp. 1288-1305. | MR 905332 | Zbl 0709.60058

[12] R. Georgii, Gibbs measures and phase transitions, studies in mathematics, De Gruyter, 1988. | MR 956646 | Zbl 0657.60122

[13] J. Lebowitz and O. Penrose, Rigourous treatment of the Van der Waals-Maxwell theory of the liquid vapor transition, J. Math. Phys., 7, 1996, pp. 98-113. | MR 187835 | Zbl 0938.82520

[14] T. Seppäläinen, Entropy, limit theorems and variational principles for disordered lattice systems, Comm. math. Phys., 171, 1995, pp. 233-277. | MR 1344727 | Zbl 0835.60090

[15] B. Zegarlinski, Interactions and pressure functionals for disordered lattice systems., Comm. Math. Phys., 139, 1991, pp. 305-339. | MR 1120141 | Zbl 0747.58066

[16] B. Zegarlinski, Spin systems with long-range interactions, Reviews in Math. Phys., 6, 1994, pp. 115-134. | MR 1263200 | Zbl 0830.60099