@article{AIHPB_1998__34_3_339_0, author = {Evans, Steven N. and Pitman, Jim}, title = {Construction of markovian coalescents}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {339--383}, publisher = {Gauthier-Villars}, volume = {34}, number = {3}, year = {1998}, mrnumber = {1625867}, zbl = {0906.60058}, language = {en}, url = {http://archive.numdam.org/item/AIHPB_1998__34_3_339_0/} }
TY - JOUR AU - Evans, Steven N. AU - Pitman, Jim TI - Construction of markovian coalescents JO - Annales de l'I.H.P. Probabilités et statistiques PY - 1998 SP - 339 EP - 383 VL - 34 IS - 3 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPB_1998__34_3_339_0/ LA - en ID - AIHPB_1998__34_3_339_0 ER -
Evans, Steven N.; Pitman, Jim. Construction of markovian coalescents. Annales de l'I.H.P. Probabilités et statistiques, Volume 34 (1998) no. 3, pp. 339-383. http://archive.numdam.org/item/AIHPB_1998__34_3_339_0/
[1] Brownian excursions, critical random graphs and the multiplicative coalescent. Ann. Probab., Vol. 25, 1997, pp. 812-854. | MR | Zbl
.[2] Brownian bridge asymptotics for random mappings. Random Structures and Algorithms, Vol. 5, 1994, pp. 487-512. | MR | Zbl
and .[3] The entrance boundary of the additive coalescent. Paper in preparation, 1997.
and .[4] Exchangeability and related topics. In P.L. Hennequin, editor, École d'Été de Probabilités de Saint-Flour XII, Springer Lecture Notes in Mathematics, Vol. 1117. Springer-Verlag, 1985. | MR | Zbl
.[5] The continuum random tree III. Ann. Probab., Vol. 21, 1993, pp. 248-289. | MR | Zbl
.[6] Deterministic and stochastic models for coalescence: a review of the mean-field theory for probabilists. To appear in Bernoulli. Available via homepage http://www.stat.berkeley.edu/users/aldous, 1997. | MR | Zbl
.[7] The entrance boundary of the multiplicative coalescent. Unpublished. Available via homepage http://www.stat.berkeley.edu/users/aldous, 1997. | Zbl
and .[8] The standard additive coalescent. Technical Report 489, Dept. Statistics, U.C. Berkeley, 1997. Available via http://www.stat.berkeley.edu/users/pitman.
and .[9] Systèmes de Levy des processus de Markov. Invent. Math., Vol. 21, 1973, pp. 183-198. | EuDML | MR | Zbl
and .[10] Markov Processes and Potential Theory. Academic Press, New York, 1968. | MR | Zbl
and .[11] On Ruelle's probability cascades and an abstract cavity method. To appear in Comm. Math. Phys., 1998. | MR | Zbl
and .[12] Generating random spanning trees. In Proc. 30'th IEEE Symp. Found. Comp. Sci., 1989, pp. 442-447.
.[13] A theorem on trees. Quarterly Journal of Pure and Applied Mathematics, 23:376-378, 1889. (Also in The Collected Mathematical Papers of Arthur CAYLEY. Vol. XIII, pp. 26-28, Cambridge University Press, 1897). | JFM
.[14] Measure-valued Markov processes. In École d'Été de Probabilités de Saint-Flour, 1991, Springer Lecture Notes in Mathematics, Vol. 1117, 1994. | MR | Zbl
.[15] Continuity and weak convergence of ranked and size-biased permutations on the infinite simplex. Stochastic Processes and their Applications, Vol. 31, 1989, pp. 89-103. | MR | Zbl
and .[16] On the stochastic approach to cluster size distribution during particle coagulation I: Asymptotic expansion in the deterministic limit. J. Phys. A: Math. Gen., Vol. 26, 1993, pp. 2755-2767. | MR | Zbl
and .[17] Fleming-Viot processes in population genetics. SIAM Journal on Control and Optimization, Vol. 31, 1993, pp. 345-386. | MR | Zbl
and .[18] Infinitely-many-species Lotka-Volterra equations arising from systems of coalescing masses. Technical Report 478, Dept. Statistics, U.C. Berkeley, 1997. To appear in J. London Math. Soc.. Available via http://www.stat.berkeley.edu/tech-reports. | MR | Zbl
.[19] Stationary Markov processes related to stable Ornstein-Uhlenbeck processes and the additive coalescent. Technical Report 488, Dept. Statistics, U.C. Berkeley, 1997. Available via http://www.stat.berkeley.edu/users/pitman. | MR
and .[20] Exact solutions for random coagulation processes. Z. Phys. B - Condensed Matter, Vol. 58, 1985, pp. 219-227.
, , , and .[21] Stochastic Differential Equations and Diffusion Processes. North Holland/Kodansha, 1989. 2nd edition. | MR | Zbl
and .[22] Random discrete distributions. J. Roy. Statist. Soc. B, Vol. 37, 1975, pp. 1-22 | MR | Zbl
.[23] The representation of partition structures. J. London Math. Soc., Vol. 18, 1978, pp. 374-380. | MR | Zbl
.[24] The coalescent. Stochastic Processes and their Applications, Vol. 13, 1982, pp. 235-248. | MR | Zbl
.[25] On the genealogy of large populations. In J. Gani and E.J. Hannan, editors, Essays in Statistical Science, volume 19A of J.A.P. Special vol., pp. 27-43. Applied Probability Trust, 1982. | MR | Zbl
.[26] Merger rates in hierarchical models of galaxy formation. Mon. Not. R. Astron. Soc., Vol. 262, 1993, pp. 627-649.
and .[27] Coagulation in finite systems. J. Colloid and Interface Science, Vol. 65, 1978, 276-285.
.[28] Probability on trees and networks. Book in preparation, available at http://www.ma.huji.ac.il/ lyons/prbtree.html, 1996.
and .[29] Stochastic coalescence. Technometrics, Vol. 10, 1968, pp. 133-143. | MR
.[30] Order statistics for jumps of normalized subordinators. Stoch. Proc. Appl., Vol. 46, 1993, pp. 267-281. | MR | Zbl
.[31] Size-biased sampling of Poisson point processes and excursions. Probab. Th. Rel. Fields, Vol. 92, 1992, pp. 21-39. | MR | Zbl
, , and .[32] Exchangeable and partially exchangeable random partitions. Probab. Th. Rel. Fields, Vol. 102, 1995, pp. 145-158. | MR | Zbl
.[33] Coalescent random forests. Technical Report 457, Dept. Statistics, U.C. Berkeley, 1996. Available via http://www.stat.berkeley.edu/users/pitman.
.[34] Random discrete distributions invariant under size-biased permutation. Adv. Appl. Prob., Vol. 28, 1996, pp. 525-539. | MR | Zbl
.[35] Abel-Cayley-Hurwitz multinomial expansions associated with random mappings, forests and subsets. Technical Report 498, Dept. Statistics, U.C. Berkeley, 1997. Available via http://www.stat.berkeley.edu/users/pitman.
.[36] Coalescents with multiple collisions. Technical Report 495, Dept. Statistics, U.C. Berkeley, 1997. Available via http://www.stat.berkeley.edu/users/pitman.
.[37] The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator. Ann. Probab., Vol. 25, 1997, pp. 855-900. | MR | Zbl
and .[38] On the enumeration of trees. In R. Guy, H. Hanani, N. Sauer, and J. Schonheim, editors, Combinatorial Structures and their Applications, pages 355-360. Gordon and Breach, New York, 1970. | MR | Zbl
.[39] Merging and hierarchical clustering from an initially Poisson distribution. Mon. Not. R. Astron. Soc., Vol. 276, 1995, pp. 796-824.
.[40] Coagulation and branching process models of gravitational clustering. Mon. Not. R. Astron. Soc., Vol. 289, 1997, pp. 66-80.
and .[41] Enumerative combinatorics, vol. 2. Book in preparation, to be published by Cambridge University Press, 1996. | MR
.[42] Stochastic coagulation equation and validity of the statistical coagulation equation. J. Geomag. Geoelectr., Vol. 45, 1993, pp. 361-381.
and .[43] Validity of the stochastic coagulation equation and runaway growth of protoplanets. Icarus, Vol. 107, 1994, pp. 404-412.
and .[44] An Introduction to Stochastic Modeling (revised ed.). Academic Press, Boston, 1994. | MR | Zbl
and .[45] Fluctuations in coagulating systems II. J. Statist. Phys., Vol. 49, 1987, pp. 927-975. | MR
.[46] Fluctuations in coagulating systems. J. Statist. Phys., Vol. 49, 1987, pp. 879-926. | MR
and .[47] Drei Vorträge über Diffusion, Brownsche Bewegung und Koagulation von Kolloidteilchen. Physik. Z., Vol. 17, 1916, pp. 557-585.
.