@article{AIHPB_1999__35_5_573_0, author = {Funaki, T.}, title = {Free boundary problem from stochastic lattice gas model}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {573--603}, publisher = {Gauthier-Villars}, volume = {35}, number = {5}, year = {1999}, mrnumber = {1705681}, zbl = {0935.60094}, language = {en}, url = {http://archive.numdam.org/item/AIHPB_1999__35_5_573_0/} }
TY - JOUR AU - Funaki, T. TI - Free boundary problem from stochastic lattice gas model JO - Annales de l'I.H.P. Probabilités et statistiques PY - 1999 SP - 573 EP - 603 VL - 35 IS - 5 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPB_1999__35_5_573_0/ LA - en ID - AIHPB_1999__35_5_573_0 ER -
Funaki, T. Free boundary problem from stochastic lattice gas model. Annales de l'I.H.P. Probabilités et statistiques, Volume 35 (1999) no. 5, pp. 573-603. http://archive.numdam.org/item/AIHPB_1999__35_5_573_0/
[1] Asymptotic behavior of densities for two-particle annihilating random walks, J. Statis. Phys. 62 (1991) 297-372. | MR | Zbl
and ,[2] An analysis of a phase field model of a free boundary, Arch. Rat. Mech. Anal. 92 (1986) 205-245. | MR | Zbl
,[3] Hydrodynamic limits for one-dimensional particle systems with moving boundaries, Ann. Probab. 24 (1996) 559-598. | MR | Zbl
and ,[4] Some measure-valued Markov processes in population genetics theory, Indiana Univ. Math. J. 28 (1979) 817-943. | MR | Zbl
and ,[5] Variational Principles and Free-Boundary Problems, Wiley, New York, 1982. | MR | Zbl
,[6] Hydrodynamic limit of one-dimensional exclusion processes with speed change, Ann. Probab. 19 (1991) 245- 265. | MR | Zbl
, and ,[7] Hydrodynamic limit for lattice gas reversible under Bernoulli measures, in: T. Funaki and W.A. Woyczynski (Eds.), Nonlinear Stochastic PDE's: Hydrodynamic Limit and Burgers' Turbulence, IMA, Vol. 77, Univ. Minnesota, Springer, 1995, pp. 1-40. | MR | Zbl
, and ,[8] Motion by mean curvature from the Ginzburg-Landau ∇φ-interface model, Commun. Math. Phys. 185 (1997) 1-36. | MR | Zbl
and ,[9] Canonical Gibbs Measures, Lect. Notes in Math., Vol. 760, Springer, 1979. | MR | Zbl
,[10] Nonlinear diffusion limit for a system with nearest neighbor interactions, Commun. Math. Phys. 118 (1988) 31-59. | MR | Zbl
, and ,[11] Driven tracer particle in one dimensional symmetric simple exclusion, Commun. Math. Phys. 192 (1998) 287-307. | MR | Zbl
, and ,[12] Hydrodynamic limit for attractive particle systems on Zd, Commun. Math. Phys. 140 (1991) 417-448. | MR | Zbl
,[13] Variational methods in the Stefan problem, in: A. Visintin (Ed.), Phase Transitions and Hysteresis, Lect. Notes in Math., Vol. 1584, Springer, 1994, pp. 147-212. | MR | Zbl
,[14] The Stefan Problem, Amer. Math. Soc. Transl. Monogr. 27, Providence, 1971. | Zbl
,[15] Numerical Methods for Grid Equations, Vol. I, Birkhäuser, 1989. | MR | Zbl
and ,[16] Large Scale Dynamics of Interacting Particles, Springer, 1991. | Zbl
,[17] Interface motion in models with stochastic dynamics, J. Statis. Phys. 71 (1993) 1081-1132. | MR | Zbl
,[18] Hydrodynamic limit for a spin system on a multidimensional lattice, Probab. Theory Related Fields 95 (1993) 47-74. | MR | Zbl
and ,[19] Scaling limits of interacting diffusions with arbitrary initial distributions, Probab. Theory Related Fields 99 (1994) 97-110. | MR | Zbl
,[20] Scaling limits for interacting diffusions, Commun. Math. Phys. 135 (1991) 313-353. | MR | Zbl
,