@article{AIHPB_2000__36_5_583_0, author = {Deheuvels, Paul}, title = {Chung-type functional laws of the iterated logarithm for tail empirical processes}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {583--616}, publisher = {Gauthier-Villars}, volume = {36}, number = {5}, year = {2000}, mrnumber = {1792657}, zbl = {0973.60027}, language = {en}, url = {http://archive.numdam.org/item/AIHPB_2000__36_5_583_0/} }
TY - JOUR AU - Deheuvels, Paul TI - Chung-type functional laws of the iterated logarithm for tail empirical processes JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2000 SP - 583 EP - 616 VL - 36 IS - 5 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPB_2000__36_5_583_0/ LA - en ID - AIHPB_2000__36_5_583_0 ER -
%0 Journal Article %A Deheuvels, Paul %T Chung-type functional laws of the iterated logarithm for tail empirical processes %J Annales de l'I.H.P. Probabilités et statistiques %D 2000 %P 583-616 %V 36 %N 5 %I Gauthier-Villars %U http://archive.numdam.org/item/AIHPB_2000__36_5_583_0/ %G en %F AIHPB_2000__36_5_583_0
Deheuvels, Paul. Chung-type functional laws of the iterated logarithm for tail empirical processes. Annales de l'I.H.P. Probabilités et statistiques, Tome 36 (2000) no. 5, pp. 583-616. http://archive.numdam.org/item/AIHPB_2000__36_5_583_0/
[1] Small deviations in the functional central limit theorem with applications to functional laws of the iterated logarithm, Ann. Probab. 11 (1983) 78-101. | MR | Zbl
,[2] On the functional form of Lévy's modulus of continuity for Brownian motion, Z. Wahrsch. Verw. Gebiete 69 (1985) 567-579. | MR | Zbl
,[3] An Introduction to Continuity, Extrema and Related Topics for General Gaussian Processes, IMS, Hayward, CA, 1990. | MR | Zbl
,[4] Topics in Stochastic Processes, Academic Press, New York, 1975. | MR | Zbl
, ,[5] On the rate of clustering to the Strassen set for increments of the uniform empirical process, J. Theoret. Probab. 10 (1997) 557-579. | MR | Zbl
,[6] A note on Gaussian measures which agree on balls, Ann. Inst. Henri Poincaré, Probab. Statist. 13 (1977) 231-238. | Numdam | MR | Zbl
,[7] On probabilities of small deviations for stochastic processes, Siberian Adv. Math. 1 (1991) 39-63. | MR | Zbl
, ,[8] Evaluations of various Wiener integrals by use of certain Sturm-Liouville differential equations, Bull. Amer. Math. Soc. 51 (1945) 73-90. | MR | Zbl
, ,[9] Strong approximations of bivariate uniform empirical processes, Ann. Inst. Henri Poincaré, Probab. Statist. 34 (1998) 425-480. | Numdam | MR | Zbl
, ,[10] On the maximum partial sums of sequences of independent random variables, Trans. Amer. Math. Soc. 64 (1948) 205-233. | MR | Zbl
,[11] A relation between Chung's and Strassen's law of the iterated logarithm, Z. Wahrsch. Verw. Gebiete 54 (1980) 287-301. | MR | Zbl
,[12] A lim inf result in Strassen's law of the iterated logarithm, Colloq. Math. Soc. János Bolyai 57 (1989) 83-93. | MR | Zbl
,[13] On the asymptotic distribution of weighted uniform empirical and quantile processes in the middle and on the tails, Stochastic Process. Appl. 21 (1985) 119-132. | MR | Zbl
, ,[14] How small are the increments of a Wiener process?, Stochastic Process. Appl. 8 (1978) 119-129. | MR | Zbl
, ,[15] Strong Approximations in Probability and Statistics, Academic Press, New York, 1981. | MR | Zbl
, ,[16] Strong laws for local quantile processes, Ann. Probab. 25 (1997) 2007-2054. | MR | Zbl
,[17] Necessary and sufficient conditions for the Strassen law of the iterated logarithm in nonuniform topologies, Ann. Probab. 22 (1994) 1838-1856. | MR | Zbl
, ,[18] Nonstandard functional laws of the iterated logarithm for tail empirical and quantile processes, Ann. Probab. 18 (1990) 1693-1722. | MR | Zbl
, ,[19] Random fractal functional laws of the iterated logarithm, Studia Sci. Math. Hungar. 34 (1998) 89-106. | MR | Zbl
, ,[20] Rates of clustering for some Gaussian self-similar processes, Probab. Theory Related Fields 88 (1991) 47-75. | MR | Zbl
, ,[21] A lim inf result in Strassen's law of the iterated logarithm, Probab. Theory Related Fields 89 (1991) 149-157. | MR | Zbl
,[22] Diffusion Processes and their Sample Paths, Springer, Berlin, 1965. | MR | Zbl
, ,[23] Gaussian Measures in Banach Spaces, Lectures Notes in Math., Vol. 463, Springer, Berlin, 1975. | MR | Zbl
,[24] The law of the iterated logarithm in C[0, 1], Z. Wahrsch. Verw. Gebiete 33 (1976) 221-235. | MR | Zbl
,[25] A strong convergence theorem for Banach space valued random variables, Ann. Probab. 4 (1976) 744-771. | MR | Zbl
,[26] Lim inf results for Gaussian samples and Chung's functional LIL, Ann. Probab. 22 (1994) 1789-1903. | MR | Zbl
, , ,[27] Probability in Banach Spaces, Springer, Berlin, 1991. | MR | Zbl
, ,[28] Gaussian Random Functions, Kluwer, Dordrecht, 1995. | MR | Zbl
,[29] A strong invariance theorem for the tail empirical process, Ann. Inst. Henri Poincaré, Probab. Statist. 24 (1988) 491-506. | Numdam | MR | Zbl
,[30] A refinement of the KMT inequality for the uniform empirical process, Ann. Probab. 15 (1987) 871-884. | MR | Zbl
, ,[31] Small deviations in the space of trajectories, Teor. Veroiatnost. i Primenen. 19 (1974) 726-736 (in Russian). | MR | Zbl
,[32] On the law of the iterated logarithm in Chung form for functional spaces, Teor. Veroiatnost. i Primenen. 24 (1979) 399-407 (in Russian). | MR | Zbl
,[33] A unification of Strassen's law and Lévy's modulus of continuity, Z. Wahrsch. Verw. Gebiete 56 (1981) 163-179. | MR | Zbl
,[34] On asymptotics of the Wiener measure on a narrow strip, Teor. Veroiatnost. i Primenen. 26 (1981) 630 (in Russian).
,[35] A generalization of Strassen's functional law of iterated logarithm, Z. Wahrsch. Verw. Gebiete 50 (1979) 257-264. | MR | Zbl
,[36] Empirical Processes with Applications to Statistics, Wiley, New York, 1986. | MR | Zbl
, ,[37] An invariance principle for the law of the iterated logarithm, Z. Wahrsch. Verw. Gebiete 3 (1964) 211-226. | MR | Zbl
,